These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 9620095)

  • 1. Understanding retinal cytosolic reductive stress.
    Williamson JR; Ido Y
    Invest Ophthalmol Vis Sci; 1998 Jun; 39(7):1295-6. PubMed ID: 9620095
    [No Abstract]   [Full Text] [Related]  

  • 2. Hyperglycemic cytosolic reductive stress 'pseudohypoxia': implications for diabetic retinopathy.
    Ido Y; Williamson JR
    Invest Ophthalmol Vis Sci; 1997 Jul; 38(8):1467-70. PubMed ID: 9224273
    [No Abstract]   [Full Text] [Related]  

  • 3. [The content of pyridine coenzymes in the liver of the adult and old rats in stress].
    Rud'ko NP; Davydov VV
    Patol Fiziol Eksp Ter; 2004; (2):22-3. PubMed ID: 15208925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The metabolism of the retina of the normal and alloxan diabetic rat. The levels of oxidised and reduced pyridine nucleotides and the oxidation of the carbon-1 and carbon-6 of glucose.
    Graymore CN; Towlson MJ
    Vision Res; 1966 Jun; 5(5):379-89. PubMed ID: 4379382
    [No Abstract]   [Full Text] [Related]  

  • 5. Effect of NADH-X on cytosolic glycerol-3-phosphate dehydrogenase.
    Prabhakar P; Laboy JI; Wang J; Budker T; Din ZZ; Chobanian M; Fahien LA
    Arch Biochem Biophys; 1998 Dec; 360(2):195-205. PubMed ID: 9851831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of dietary taurine supplementation on GSH and NAD(P)-redox status, lipid peroxidation, and energy metabolism in diabetic precataractous lens.
    Obrosova IG; Stevens MJ
    Invest Ophthalmol Vis Sci; 1999 Mar; 40(3):680-8. PubMed ID: 10067971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ability of cytosolic malate dehydrogenase and lactate dehydrogenase to increase the ratio of NADPH to NADH oxidation by cytosolic glycerol-3-phosphate dehydrogenase.
    Fahien LA; Laboy JI; Din ZZ; Prabhakar P; Budker T; Chobanian M
    Arch Biochem Biophys; 1999 Apr; 364(2):185-94. PubMed ID: 10190973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diabetes-induced dysfunction of the glutamate transporter in retinal Müller cells.
    Li Q; Puro DG
    Invest Ophthalmol Vis Sci; 2002 Sep; 43(9):3109-16. PubMed ID: 12202536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The role of transforming growth factor-beta in the pathogenesis of diabetic retinopathy].
    Gacka M; Adamiec J
    Przegl Lek; 2006; 63(5):296-8. PubMed ID: 17036509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stress and brain nicotinamide adenine dinucleotides in normal and hypophysectomized rats.
    Camarda R; D'Alessandro F; Guarneri R; Bonavita V
    Acta Neurol (Napoli); 1971; 26(4):501-10. PubMed ID: 4399888
    [No Abstract]   [Full Text] [Related]  

  • 11. [Role of insulin-like growth factor I in the development of diabetic retinopathy].
    Gacka M; Adamiec J
    Przegl Lek; 2003; 60(9):588-92. PubMed ID: 15065339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beneficial effect of zeaxanthin on retinal metabolic abnormalities in diabetic rats.
    Kowluru RA; Menon B; Gierhart DL
    Invest Ophthalmol Vis Sci; 2008 Apr; 49(4):1645-51. PubMed ID: 18385086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of inhibition of glycation and oxidative stress on the development of cataract and retinal vessel abnormalities in diabetic rats.
    Agardh E; Hultberg B; Agardh C
    Curr Eye Res; 2000 Jul; 21(1):543-9. PubMed ID: 11035534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diabetic retinopathy mechanism probed.
    Mitka M
    JAMA; 2005 Jan; 293(2):148-9. PubMed ID: 15644525
    [No Abstract]   [Full Text] [Related]  

  • 15. Isocitrate dehydrogenase: A NADPH-generating enzyme in the lumen of the endoplasmic reticulum.
    Margittai E; Bánhegyi G
    Arch Biochem Biophys; 2008 Mar; 471(2):184-90. PubMed ID: 18201546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impaired apparent ion demand in experimental diabetic retinopathy: correction by lipoic Acid.
    Berkowitz BA; Roberts R; Stemmler A; Luan H; Gradianu M
    Invest Ophthalmol Vis Sci; 2007 Oct; 48(10):4753-8. PubMed ID: 17898301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutamate formed from lignoceric acid by rat brain preparation in the presence of pyridine nucleotide and cytosolic factors: a brain-specific oxidation of very long chain fatty acids.
    Uda M; Singh I; Kishimoto Y
    Biochemistry; 1981 Mar; 20(5):1295-300. PubMed ID: 7225329
    [No Abstract]   [Full Text] [Related]  

  • 18. [Current views on the development of diabetic retinopathy].
    Sosna T
    Cas Lek Cesk; 2002 Nov; 141(22):697-701. PubMed ID: 12532906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of hyperglycemia-mediated erythrocyte redox state alteration in the development of diabetic retinopathy.
    Roy R; Das D; Saurabh K; Kulkarni VV; Adusumilli H; Panigrahi PK; Nethralaya AB
    Retina; 2013; 33(7):1480-1. PubMed ID: 23967450
    [No Abstract]   [Full Text] [Related]  

  • 20. Chiral inversion of RS-8359: a selective and reversible MAO-A inhibitor via oxido-reduction of keto-alcohol.
    Itoh K; Hoshino K; Endo A; Asakawa T; Yamakami K; Noji C; Kosaka T; Tanaka Y
    Chirality; 2006 Sep; 18(9):698-706. PubMed ID: 16823812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.