These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 9620606)
1. Biased dependency of CD80 versus CD86 in the induction of transcription factors regulating the human IL-2 promoter. Olsson C; Michaëlsson E; Parra E; Pettersson U; Lando PA; Dohlsten M Int Immunol; 1998 Apr; 10(4):499-506. PubMed ID: 9620606 [TBL] [Abstract][Full Text] [Related]
2. Costimulation light: activation of CD4+ T cells with CD80 or CD86 rather than anti-CD28 leads to a Th2 cytokine profile. Broeren CP; Gray GS; Carreno BM; June CH J Immunol; 2000 Dec; 165(12):6908-14. PubMed ID: 11120816 [TBL] [Abstract][Full Text] [Related]
3. CD80 and CD86 are not equivalent in their ability to induce the tyrosine phosphorylation of CD28. Slavik JM; Hutchcroft JE; Bierer BE J Biol Chem; 1999 Jan; 274(5):3116-24. PubMed ID: 9915850 [TBL] [Abstract][Full Text] [Related]
4. Induction of activator protein (AP)-1 and nuclear factor-kappaB by CD28 stimulation involves both phosphatidylinositol 3-kinase and acidic sphingomyelinase signals. Edmead CE; Patel YI; Wilson A; Boulougouris G; Hall ND; Ward SG; Sansom DM J Immunol; 1996 Oct; 157(8):3290-7. PubMed ID: 8871623 [TBL] [Abstract][Full Text] [Related]
5. CD28 ligands CD80 (B7-1) and CD86 (B7-2) induce long-term autocrine growth of CD4+ T cells and induce similar patterns of cytokine secretion in vitro. Levine BL; Ueda Y; Craighead N; Huang ML; June CH Int Immunol; 1995 Jun; 7(6):891-904. PubMed ID: 7577797 [TBL] [Abstract][Full Text] [Related]
6. CD28 co-stimulatory regimes differ in their dependence on phosphatidylinositol 3-kinase: common co-signals induced by CD80 and CD86. Cefai D; Cai YC; Hu H; Rudd C Int Immunol; 1996 Oct; 8(10):1609-16. PubMed ID: 8921441 [TBL] [Abstract][Full Text] [Related]
7. Requirement of CD28-CD86 co-stimulation in the interaction between antigen-primed T helper type 2 and B cells. Nakajima A; Watanabe N; Yoshino S; Yagita H; Okumura K; Azuma M Int Immunol; 1997 May; 9(5):637-44. PubMed ID: 9184909 [TBL] [Abstract][Full Text] [Related]
8. Differential function of CD80- and CD86-transfected human melanoma cells in the presence of IL-12 and IFN-gamma. Rudy W; Gückel B; Siebels M; Lindauer M; Meuer SC; Moebius U Int Immunol; 1997 Jun; 9(6):853-60. PubMed ID: 9199968 [TBL] [Abstract][Full Text] [Related]
9. Costimulatory molecule requirement for bovine WC1+gammadelta T cells' proliferative response to bacterial superantigens. Fikri Y; Pastoret PP; Nyabenda J Scand J Immunol; 2002 Apr; 55(4):373-81. PubMed ID: 11967119 [TBL] [Abstract][Full Text] [Related]
10. A T cell lymphoma can provide potent co-stimulatory effects to T cells that are not mediated by B7-1, B7-2, CD40, HSA or CD70. Nieland JD; Kruisbeek AM Int Immunol; 1995 Nov; 7(11):1827-38. PubMed ID: 8580081 [TBL] [Abstract][Full Text] [Related]
11. Both CD28 ligands CD80 (B7-1) and CD86 (B7-2) activate phosphatidylinositol 3-kinase, and wortmannin reveals heterogeneity in the regulation of T cell IL-2 secretion. Ueda Y; Levine BL; Huang ML; Freeman GJ; Nadler LM; June CH; Ward SG Int Immunol; 1995 Jun; 7(6):957-66. PubMed ID: 7577804 [TBL] [Abstract][Full Text] [Related]
12. Costimulation regulates the kinetics of interleukin-2 response to bacterial superantigens. Muraille E; Devos S; Thielemans K; Urbain J; Moser M; Leo O Immunology; 1996 Oct; 89(2):245-9. PubMed ID: 8943721 [TBL] [Abstract][Full Text] [Related]
13. Regulation of superantigen-induced T cell activation in the absence and the presence of MHC class II. Lando PA; Olsson C; Kalland T; Newton D; Kotb M; Dohlsten M J Immunol; 1996 Oct; 157(7):2857-63. PubMed ID: 8816390 [TBL] [Abstract][Full Text] [Related]
14. Exogenous and endogenous antigens are differentially presented by mast cells to CD4+ T lymphocytes. Frandji P; Tkaczyk C; Oskeritzian C; David B; Desaymard C; Mécheri S Eur J Immunol; 1996 Oct; 26(10):2517-28. PubMed ID: 8898968 [TBL] [Abstract][Full Text] [Related]
15. Costimulation of human CD4+ T cells with LFA-3 and B7 induce distinct effects on AP-1 and NF-kappa B transcription factors. Parra E; Varga M; Sigvardsson M; Hedlund G; Kalland T; Leanderson T; Sjögren HO; Dohlsten M J Immunol; 1995 Aug; 155(3):1132-40. PubMed ID: 7543515 [TBL] [Abstract][Full Text] [Related]
16. Endothelial cells modify the costimulatory capacity of transmigrating leukocytes and promote CD28-mediated CD4(+) T cell alloactivation. Denton MD; Geehan CS; Alexander SI; Sayegh MH; Briscoe DM J Exp Med; 1999 Aug; 190(4):555-66. PubMed ID: 10449526 [TBL] [Abstract][Full Text] [Related]
17. T-cell alterations in cardiac allograft recipients after B7 (CD80 and CD86) blockade. Woodward JE; Bayer AL; Chavin KD; Blue ML; Baliga P Transplantation; 1998 Jul; 66(1):14-20. PubMed ID: 9679816 [TBL] [Abstract][Full Text] [Related]
18. CTLA4-CD80/CD86 interactions on primary mouse CD4+ T cells integrate signal-strength information to modulate activation with Concanavalin A. Mukherjee S; Ahmed A; Nandi D J Leukoc Biol; 2005 Jul; 78(1):144-57. PubMed ID: 15788440 [TBL] [Abstract][Full Text] [Related]
19. CD80 (B7-1) and CD86 (B7-2) are functionally equivalent in the initiation and maintenance of CD4+ T-cell proliferation after activation with suboptimal doses of PHA. Vasilevko V; Ghochikyan A; Holterman MJ; Agadjanyan MG DNA Cell Biol; 2002 Mar; 21(3):137-49. PubMed ID: 12015893 [TBL] [Abstract][Full Text] [Related]
20. Functional expression of CD80 and CD86 allows immunogenicity of malignant B cells from non-Hodgkin's lymphomas. Chaperot L; Plumas J; Jacob MC; Bost F; Molens JP; Sotto JJ; Bensa JC Exp Hematol; 1999 Mar; 27(3):479-88. PubMed ID: 10089910 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]