BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 9620651)

  • 1. The effect of radiofrequency energy on the length and temperature properties of the glenohumeral joint capsule.
    Obrzut SL; Hecht P; Hayashi K; Fanton GS; Thabit G; Markel MD
    Arthroscopy; 1998; 14(4):395-400. PubMed ID: 9620651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative effects of laser and radiofrequency energy on joint capsule.
    Osmond C; Hecht P; Hayashi K; Hansen S; Fanton GS; Thabit G; Markel MD
    Clin Orthop Relat Res; 2000 Jun; (375):286-94. PubMed ID: 10853180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of simulated shoulder thermal capsulorrhaphy using radiofrequency energy on glenohumeral fluid temperature.
    Lu Y; Bogdanske J; Lopez M; Cole BJ; Markel MD
    Arthroscopy; 2005 May; 21(5):592-6. PubMed ID: 15891727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The thermal properties of bovine joint capsule. The basic science of laser- and radiofrequency-induced capsular shrinkage.
    Naseef GS; Foster TE; Trauner K; Solhpour S; Anderson RR; Zarins B
    Am J Sports Med; 1997; 25(5):670-4. PubMed ID: 9302474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The thermal effect of monopolar radiofrequency energy on the properties of joint capsule. An in vivo histologic study using a sheep model.
    Hecht P; Hayashi K; Cooley AJ; Lu Y; Fanton GS; Thabit G; Markel MD
    Am J Sports Med; 1998; 26(6):808-14. PubMed ID: 9850783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature changes associated with radiofrequency energy-induced heating of bovine capsular tissue: evaluation of bipolar RF electrodes.
    Shellock FG; Shields CL
    Arthroscopy; 2000; 16(4):348-58. PubMed ID: 10802471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of thermal heating on the length and histologic properties of the glenohumeral joint capsule.
    Hayashi K; Thabit G; Massa KL; Bogdanske JJ; Cooley AJ; Orwin JF; Markel MD
    Am J Sports Med; 1997; 25(1):107-12. PubMed ID: 9006703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of monopolar radiofrequency treatment pattern on joint capsular healing. In vitro and in vivo studies using an ovine model.
    Lu Y; Hayashi K; Edwards RB; Fanton GS; Thabit G; Markel MD
    Am J Sports Med; 2000; 28(5):711-9. PubMed ID: 11032230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glenohumeral translation after arthroscopic thermal capsuloplasty with a radiofrequency probe.
    Tibone JE; Lee TQ; Black AD; Sandusky MD; McMahon PJ
    J Shoulder Elbow Surg; 2000; 9(6):514-8. PubMed ID: 11155305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal profile of radiofrequency energy in the inferior glenohumeral ligament.
    Liao WL; Hedman TP; Vangsness CT
    Arthroscopy; 2004 Jul; 20(6):603-8. PubMed ID: 15241311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Axillary nerve temperatures during radiofrequency capsulorrhaphy of the shoulder.
    Gryler EC; Greis PE; Burks RT; West J
    Arthroscopy; 2001 Jul; 17(6):567-72. PubMed ID: 11447541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiofrequency energy-induced heating of bovine capsular tissue: Temperature changes produced by bipolar versus monopolar electrodes.
    Shellock FG
    Arthroscopy; 2001 Feb; 17(2):124-31. PubMed ID: 11172240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of radiofrequency energy on the ultrastructure of joint capsular collagen.
    Lopez MJ; Hayashi K; Fanton GS; Thabit G; Markel MD
    Arthroscopy; 1998; 14(5):495-501. PubMed ID: 9681542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of radiofrequency energy on glenohumeral fluid temperature during shoulder arthroscopy.
    Good CR; Shindle MK; Griffith MH; Wanich T; Warren RF
    J Bone Joint Surg Am; 2009 Feb; 91(2):429-34. PubMed ID: 19181988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of monopolar radiofrequency energy on ovine joint capsular mechanical properties.
    Lopez MJ; Hayashi K; Vanderby R; Thabit G; Fanton GS; Markel MD
    Clin Orthop Relat Res; 2000 May; (374):286-97. PubMed ID: 10818988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermally induced shrinkage of joint capsule.
    Moran K; Anderson P; Hutcheson J; Flock S
    Clin Orthop Relat Res; 2000 Dec; (381):248-55. PubMed ID: 11127662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monopolar radiofrequency energy effects on joint capsular tissue: potential treatment for joint instability. An in vivo mechanical, morphological, and biochemical study using an ovine model.
    Hecht P; Hayashi K; Lu Y; Fanton GS; Thabit G; Vanderby R; Markel MD
    Am J Sports Med; 1999; 27(6):761-71. PubMed ID: 10569363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiofrequency energy induced heating of bovine capsular tissue: in vitro assessment of newly developed, temperature-controlled monopolar and bipolar radiofrequency electrodes.
    Shellock FG
    Knee Surg Sports Traumatol Arthrosc; 2002 Jul; 10(4):254-9. PubMed ID: 12211186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying Range-of-Motion Changes Across 4 Simulated Measurements of the Glenohumeral Joint Posterior Capsule: An Exploratory Cadaver Study.
    Dashottar A; Borstad J
    J Orthop Sports Phys Ther; 2016 Dec; 46(12):1080-1085. PubMed ID: 27796196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiofrequency energy effects on the mechanical properties of tendon and capsule.
    Nightingale EJ; Walsh WR
    Arthroscopy; 2005 Dec; 21(12):1479-85. PubMed ID: 16376239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.