These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 9620794)

  • 1. Gene silencing. Methylation meets acetylation.
    Bestor TH
    Nature; 1998 May; 393(6683):311-2. PubMed ID: 9620794
    [No Abstract]   [Full Text] [Related]  

  • 2. Transcriptional gene silencing promotes DNA hypermethylation through a sequential change in chromatin modifications in cancer cells.
    Stirzaker C; Song JZ; Davidson B; Clark SJ
    Cancer Res; 2004 Jun; 64(11):3871-7. PubMed ID: 15172996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation.
    Martinowich K; Hattori D; Wu H; Fouse S; He F; Hu Y; Fan G; Sun YE
    Science; 2003 Oct; 302(5646):890-3. PubMed ID: 14593184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-repressor complexes and remodelling chromatin for repression.
    Wolffe AP; Urnov FD; Guschin D
    Biochem Soc Trans; 2000; 28(4):379-86. PubMed ID: 10961924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coordinated changes in DNA methylation and histone modifications regulate silencing/derepression of luteinizing hormone receptor gene transcription.
    Zhang Y; Fatima N; Dufau ML
    Mol Cell Biol; 2005 Sep; 25(18):7929-39. PubMed ID: 16135786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Promoter methylation and silencing of the tissue factor pathway inhibitor-2 (TFPI-2), a gene encoding an inhibitor of matrix metalloproteinases in human glioma cells.
    Konduri SD; Srivenugopal KS; Yanamandra N; Dinh DH; Olivero WC; Gujrati M; Foster DC; Kisiel W; Ali-Osman F; Kondraganti S; Lakka SS; Rao JS
    Oncogene; 2003 Jul; 22(29):4509-16. PubMed ID: 12881707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromatin-remodeling and memory factors. New regulators of plant development.
    Reyes JC; Hennig L; Gruissem W
    Plant Physiol; 2002 Nov; 130(3):1090-101. PubMed ID: 12427976
    [No Abstract]   [Full Text] [Related]  

  • 8. Uteroplacental insufficiency affects epigenetic determinants of chromatin structure in brains of neonatal and juvenile IUGR rats.
    Ke X; Lei Q; James SJ; Kelleher SL; Melnyk S; Jernigan S; Yu X; Wang L; Callaway CW; Gill G; Chan GM; Albertine KH; McKnight RA; Lane RH
    Physiol Genomics; 2006 Mar; 25(1):16-28. PubMed ID: 16380407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction with members of the heterochromatin protein 1 (HP1) family and histone deacetylation are differentially involved in transcriptional silencing by members of the TIF1 family.
    Nielsen AL; Ortiz JA; You J; Oulad-Abdelghani M; Khechumian R; Gansmuller A; Chambon P; Losson R
    EMBO J; 1999 Nov; 18(22):6385-95. PubMed ID: 10562550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA methylation and chromatin - unraveling the tangled web.
    Robertson KD
    Oncogene; 2002 Aug; 21(35):5361-79. PubMed ID: 12154399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pRb2/p130-E2F4/5-HDAC1-SUV39H1-p300 and pRb2/p130-E2F4/5-HDAC1-SUV39H1-DNMT1 multimolecular complexes mediate the transcription of estrogen receptor-alpha in breast cancer.
    Macaluso M; Cinti C; Russo G; Russo A; Giordano A
    Oncogene; 2003 Jun; 22(23):3511-7. PubMed ID: 12789259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA methylation control of tissue polarity and cellular differentiation in the mammary epithelium.
    Plachot C; Lelièvre SA
    Exp Cell Res; 2004 Aug; 298(1):122-32. PubMed ID: 15242767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SWItching off methylated DNA.
    Wade PA
    Nat Genet; 2005 Mar; 37(3):212-3. PubMed ID: 15731752
    [No Abstract]   [Full Text] [Related]  

  • 14. Human papillomavirus type 16 E7 protein increases acetylation of histone H3 in human foreskin keratinocytes.
    Zhang B; Laribee RN; Klemsz MJ; Roman A
    Virology; 2004 Nov; 329(1):189-98. PubMed ID: 15476886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retinoid receptors in health and disease: co-regulators and the chromatin connection.
    Minucci S; Pelicci PG
    Semin Cell Dev Biol; 1999 Apr; 10(2):215-25. PubMed ID: 10441075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histone deacetylase 9 couples neuronal activity to muscle chromatin acetylation and gene expression.
    Méjat A; Ramond F; Bassel-Duby R; Khochbin S; Olson EN; Schaeffer L
    Nat Neurosci; 2005 Mar; 8(3):313-21. PubMed ID: 15711539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci.
    Rountree MR; Bachman KE; Baylin SB
    Nat Genet; 2000 Jul; 25(3):269-77. PubMed ID: 10888872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emerging connections between DNA methylation and histone acetylation.
    Dobosy JR; Selker EU
    Cell Mol Life Sci; 2001 May; 58(5-6):721-7. PubMed ID: 11437233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methyl CpG binding proteins: coupling chromatin architecture to gene regulation.
    Wade PA
    Oncogene; 2001 May; 20(24):3166-73. PubMed ID: 11420733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of methylation pattern in multiple myeloma.
    San-Miguel J; García-Sanz R; López-Pérez R
    Acta Haematol; 2005; 114 Suppl 1():23-6. PubMed ID: 16166769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.