BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 9620981)

  • 1. The Bacillus subtilis AraE protein displays a broad substrate specificity for several different sugars.
    Krispin O; Allmansberger R
    J Bacteriol; 1998 Jun; 180(12):3250-2. PubMed ID: 9620981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction and characterization of recombinant Bacillus subtilis JY123 able to transport xylose efficiently.
    Park YC; Jun SY; Seo JH
    J Biotechnol; 2012 Nov; 161(4):402-6. PubMed ID: 22910119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced production of xylitol from xylose by expression of Bacillus subtilis arabinose:H
    Kim H; Lee HS; Park H; Lee DH; Boles E; Chung D; Park YC
    Enzyme Microb Technol; 2017 Dec; 107():7-14. PubMed ID: 28899489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning, functional analysis, and transcriptional regulation of the Bacillus subtilis araE gene involved in L-arabinose utilization.
    Sá-Nogueira I; Ramos SS
    J Bacteriol; 1997 Dec; 179(24):7705-11. PubMed ID: 9401028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A multitask ATPase serving different ABC-type sugar importers in Bacillus subtilis.
    Ferreira MJ; Sá-Nogueira Id
    J Bacteriol; 2010 Oct; 192(20):5312-8. PubMed ID: 20693325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering of pentose transport in Corynebacterium glutamicum to improve simultaneous utilization of mixed sugars.
    Sasaki M; Jojima T; Kawaguchi H; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2009 Nov; 85(1):105-15. PubMed ID: 19529932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of the arabinose regulon in Bacillus subtilis by AraR in vivo: crucial roles of operators, cooperativity, and DNA looping.
    Mota LJ; Sarmento LM; de Sá-Nogueira I
    J Bacteriol; 2001 Jul; 183(14):4190-201. PubMed ID: 11418559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of Acetoin through Simultaneous Utilization of Glucose, Xylose, and Arabinose by Engineered Bacillus subtilis.
    Zhang B; Li XL; Fu J; Li N; Wang Z; Tang YJ; Chen T
    PLoS One; 2016; 11(7):e0159298. PubMed ID: 27467131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential substrate specificity of two inositol transporters of Bacillus subtilis.
    Morinaga T; Matsuse T; Ashida H; Yoshida K
    Biosci Biotechnol Biochem; 2010; 74(6):1312-4. PubMed ID: 20530884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Negative regulation of L-arabinose metabolism in Bacillus subtilis: characterization of the araR (araC) gene.
    Sá-Nogueira I; Mota LJ
    J Bacteriol; 1997 Mar; 179(5):1598-608. PubMed ID: 9045819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sugar Transporter STP7 Specificity for l-Arabinose and d-Xylose Contrasts with the Typical Hexose Transporters STP8 and STP12.
    Rottmann T; Klebl F; Schneider S; Kischka D; Rüscher D; Sauer N; Stadler R
    Plant Physiol; 2018 Mar; 176(3):2330-2350. PubMed ID: 29311272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mode of action of AraR, the key regulator of L-arabinose metabolism in Bacillus subtilis.
    Mota LJ; Tavares P; Sá-Nogueira I
    Mol Microbiol; 1999 Aug; 33(3):476-89. PubMed ID: 10417639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of two myo-inositol transporter genes of Bacillus subtilis.
    Yoshida K; Yamamoto Y; Omae K; Yamamoto M; Fujita Y
    J Bacteriol; 2002 Feb; 184(4):983-91. PubMed ID: 11807058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Bacillus subtilis galE gene is essential in the presence of glucose and galactose.
    Krispin O; Allmansberger R
    J Bacteriol; 1998 Apr; 180(8):2265-70. PubMed ID: 9555917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the mmsAB-araD1 (gguABC) genes of Agrobacterium tumefaciens.
    Zhao J; Binns AN
    J Bacteriol; 2011 Dec; 193(23):6586-96. PubMed ID: 21984786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AraR, an l-Arabinose-Responsive Transcriptional Regulator in Corynebacterium glutamicum ATCC 31831, Exerts Different Degrees of Repression Depending on the Location of Its Binding Sites within the Three Target Promoter Regions.
    Kuge T; Teramoto H; Inui M
    J Bacteriol; 2015 Dec; 197(24):3788-96. PubMed ID: 26416832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variation of antimetabolite sensitivity with different carbon sources in Bacillus subtilis.
    Chaudhuri A; Mishra AK; Nanda G
    Folia Microbiol (Praha); 1982; 27(2):73-5. PubMed ID: 6806159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing key DNA contacts in AraR-mediated transcriptional repression of the Bacillus subtilis arabinose regulon.
    Franco IS; Mota LJ; Soares CM; de Sá-Nogueira I
    Nucleic Acids Res; 2007; 35(14):4755-66. PubMed ID: 17617643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Xylitol production from waste xylose mother liquor containing miscellaneous sugars and inhibitors: one-pot biotransformation by Candida tropicalis and recombinant Bacillus subtilis.
    Wang H; Li L; Zhang L; An J; Cheng H; Deng Z
    Microb Cell Fact; 2016 May; 15():82. PubMed ID: 27184671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assay, genetics, proteins, and reconstitution of proton-linked galactose, arabinose, and xylose transport systems of Escherichia coli.
    Henderson PJ; Macpherson AJ
    Methods Enzymol; 1986; 125():387-429. PubMed ID: 3520228
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.