BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 9621437)

  • 1. Thermal response of Heterorhabditis bacteriophora transformed with the Caenorhabditis elegans hsp70 encoding gene.
    Hashmi S; Hashmi G; Glazer I; Gaugler R
    J Exp Zool; 1998 Jun; 281(3):164-70. PubMed ID: 9621437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat shock enhances thermotolerance of infective juvenile insect-parasitic nematodes Heterorhabditis bacteriophora (Rhabditida: Heterorhabditidae).
    Selvan S; Grewal PS; Leustek T; Gaugler R
    Experientia; 1996 Jul; 52(7):727-30. PubMed ID: 8698117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic transformation of an entomopathogenic nematode by microinjection.
    Hashmi S; Hashmi G; Gaugler R
    J Invertebr Pathol; 1995 Nov; 66(3):293-6. PubMed ID: 8568284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Hsp70 antisense gene affects the expression of HSP70/HSC70, the regulation of HSF, and the acquisition of thermotolerance in transgenic Arabidopsis thaliana.
    Lee JH; Schöffl F
    Mol Gen Genet; 1996 Aug; 252(1-2):11-9. PubMed ID: 8804399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of heat shock protein 70 gene from Haemonchus contortus and its expression and promoter analysis in Caenorhabditis elegans.
    Zhang H; Zhou Q; Yang Y; Chen X; Yan B; Du A
    Parasitology; 2013 May; 140(6):683-94. PubMed ID: 23360558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Postembryonic RNAi in Heterorhabditis bacteriophora: a nematode insect parasite and host for insect pathogenic symbionts.
    Ciche TA; Sternberg PW
    BMC Dev Biol; 2007 Sep; 7():101. PubMed ID: 17803822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic transformation of nematodes using arrays of micromechanical piercing structures.
    Hashmi S; Ling P; Hashmi G; Reed M; Gaugler R; Trimmer W
    Biotechniques; 1995 Nov; 19(5):766-70. PubMed ID: 8588914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Difference in thermotolerance between green and red color variants of the Japanese sea cucumber, Apostichopus japonicus Selenka: Hsp70 and heat-hardening effect.
    Dong YW; Ji TT; Meng XL; Dong SL; Sun WM
    Biol Bull; 2010 Feb; 218(1):87-94. PubMed ID: 20203256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterisation and expression of an Hsp70 gene from Parastrongyloides trichosuri.
    Newton-Howes J; Heath DD; Shoemaker CB; Grant WN
    Int J Parasitol; 2006 Apr; 36(4):467-74. PubMed ID: 16469320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Both heat-shock and cold-shock influence trehalose metabolism in an entomopathogenic nematode.
    Jagdale GB; Grewal PS; Salminen SO
    J Parasitol; 2005 Oct; 91(5):988-94. PubMed ID: 16419738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular characterisation of the recovery process in the entomopathogenic nematode Heterorhabditis bacteriophora.
    Moshayov A; Koltai H; Glazer I
    Int J Parasitol; 2013 Sep; 43(10):843-52. PubMed ID: 23806512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The translational efficiencies of the two Leishmania infantum HSP70 mRNAs, differing in their 3'-untranslated regions, are affected by shifts in the temperature of growth through different mechanisms.
    Folgueira C; Quijada L; Soto M; Abanades DR; Alonso C; Requena JM
    J Biol Chem; 2005 Oct; 280(42):35172-83. PubMed ID: 16105831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological and molecular assessment of altered expression of Hsc70-1 in Arabidopsis. Evidence for pleiotropic consequences.
    Sung DY; Guy CL
    Plant Physiol; 2003 Jun; 132(2):979-87. PubMed ID: 12805626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selection on knockdown performance in Drosophila melanogaster impacts thermotolerance and heat-shock response differently in females and males.
    Folk DG; Zwollo P; Rand DM; Gilchrist GW
    J Exp Biol; 2006 Oct; 209(Pt 20):3964-73. PubMed ID: 17023590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of heat shock protein 70 induction by heat in alfalfa varieties and constitutive overexpression in transgenic plants.
    Ferradini N; Iannacone R; Capomaccio S; Metelli A; Armentano N; Semeraro L; Cellini F; Veronesi F; Rosellini D
    PLoS One; 2015; 10(5):e0126051. PubMed ID: 25951604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat shock protein 70 (Hsp70) protects postimplantation murine embryos from the embryolethal effects of hyperthermia.
    Mirkes PE; Cornel LM; Wilson KL; Dilmann WH
    Dev Dyn; 1999 Feb; 214(2):159-70. PubMed ID: 10030595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential susceptibility of Dysmicoccus vaccinii (Homoptera: Pseudococcidae) to entomopathogenic nematodes (Rhabditida: Heterorhabditidae and Steinernematidae).
    Stuart RJ; Polavarapu S; Lewis EE; Gaugler R
    J Econ Entomol; 1997 Aug; 90(4):925-32. PubMed ID: 9260541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel polymorphisms in UTR and coding region of inducible heat shock protein 70.1 gene in tropically adapted Indian zebu cattle (Bos indicus) and riverine buffalo (Bubalus bubalis).
    Sodhi M; Mukesh M; Kishore A; Mishra BP; Kataria RS; Joshi BK
    Gene; 2013 Sep; 527(2):606-15. PubMed ID: 23792016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heat shock protein accumulation is upregulated in a long-lived mutant of Caenorhabditis elegans.
    Walker GA; White TM; McColl G; Jenkins NL; Babich S; Candido EP; Johnson TE; Lithgow GJ
    J Gerontol A Biol Sci Med Sci; 2001 Jul; 56(7):B281-7. PubMed ID: 11445592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat-inducible transgenic expression in the silkmoth Bombyx mori.
    Uhlírová M; Asahina M; Riddiford LM; Jindra M
    Dev Genes Evol; 2002 Apr; 212(3):145-51. PubMed ID: 11976953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.