These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 9621692)
21. Contribution to phenotypic and genotypic characterization of Bacillus licheniformis and description of new genomovars. Manachini PL; Fortina MG; Levati L; Parini C Syst Appl Microbiol; 1998 Dec; 21(4):520-9. PubMed ID: 9924820 [TBL] [Abstract][Full Text] [Related]
22. Development of a high-resolution melting-based approach for efficient differentiation among Bacillus cereus group isolates. Antolinos V; Fernández PS; Ros-Chumillas M; Periago PM; Weiss J Foodborne Pathog Dis; 2012 Sep; 9(9):777-85. PubMed ID: 22881064 [TBL] [Abstract][Full Text] [Related]
23. Comparative 16S rRNA oligonucleotide analyses and murein types of round-spore-forming bacilli and non-spore-forming relatives. Stackebrandt E; Ludwig W; Weizenegger M; Dorn S; McGill TJ; Fox GE; Woese CR; Schubert W; Schleifer KH J Gen Microbiol; 1987 Sep; 133(9):2523-9. PubMed ID: 2452227 [TBL] [Abstract][Full Text] [Related]
24. Classification of the genus Bacillus based on MALDI-TOF MS analysis of ribosomal proteins coded in S10 and spc operons. Hotta Y; Sato J; Sato H; Hosoda A; Tamura H J Agric Food Chem; 2011 May; 59(10):5222-30. PubMed ID: 21469741 [TBL] [Abstract][Full Text] [Related]
25. Homoduplex and heteroduplex polymorphisms of the amplified ribosomal 16S-23S internal transcribed spacers describe genetic relationships in the "Bacillus cereus group". Daffonchio D; Cherif A; Borin S Appl Environ Microbiol; 2000 Dec; 66(12):5460-8. PubMed ID: 11097928 [TBL] [Abstract][Full Text] [Related]
26. Fluorescent heteroduplex assay for monitoring Bacillus anthracis and close relatives in environmental samples. Merrill L; Richardson J; Kuske CR; Dunbar J Appl Environ Microbiol; 2003 Jun; 69(6):3317-26. PubMed ID: 12788732 [TBL] [Abstract][Full Text] [Related]
27. Specific oligonucleotide probes for in situ detection of a major group of gram-positive bacteria with low DNA G + C content. Meier H; Amann R; Ludwig W; Schleifer KH Syst Appl Microbiol; 1999 May; 22(2):186-96. PubMed ID: 10390869 [TBL] [Abstract][Full Text] [Related]
28. Short Communication: Elucidation of bacterial community structure on thin-spined porcupine (Chaetomys subspinosus) spines by denaturing. Bezerra RA; Giné GA; Marques EL; Abreu-Tarazi MF; Rezende RP; Gaiotto FA Genet Mol Res; 2015 Oct; 14(4):11867-75. PubMed ID: 26436511 [TBL] [Abstract][Full Text] [Related]
29. Characterisation and profiling of Bacillus subtilis, Bacillus cereus and Bacillus licheniformis by MALDI-TOF mass fingerprinting. Fernández-No IC; Böhme K; Díaz-Bao M; Cepeda A; Barros-Velázquez J; Calo-Mata P Food Microbiol; 2013 Apr; 33(2):235-42. PubMed ID: 23200657 [TBL] [Abstract][Full Text] [Related]
30. Comparison of gyrB gene sequences, 16S rRNA gene sequences and DNA-DNA hybridization in the Bacillus subtilis group. Wang LT; Lee FL; Tai CJ; Kasai H Int J Syst Evol Microbiol; 2007 Aug; 57(Pt 8):1846-1850. PubMed ID: 17684269 [TBL] [Abstract][Full Text] [Related]
31. Phylogenetic analysis of Bacillus subtilis and related taxa based on partial gyrA gene sequences. Chun J; Bae KS Antonie Van Leeuwenhoek; 2000 Aug; 78(2):123-7. PubMed ID: 11204764 [TBL] [Abstract][Full Text] [Related]
32. [Lethal "per os" effect of microbial strains belonging to the species B. cereus and B. thuringiensis toward Bombyx mori]. Fabio U; Quaglio Fabio P G Batteriol Virol Immunol Ann Osp Maria Vittor Torino; 1968; 61(9):308-17. PubMed ID: 4982126 [No Abstract] [Full Text] [Related]
33. Identification of single nucleotide polymorphisms (SNPs) in the 16S rRNA gene of foodborne Bacillus spp. Fernández-No IC; Böhme K; Caamaño-Antelo S; Barros-Velázquez J; Calo-Mata P Food Microbiol; 2015 Apr; 46():239-245. PubMed ID: 25475292 [TBL] [Abstract][Full Text] [Related]
34. Phylogeny in aid of the present and novel microbial lineages: diversity in Bacillus. Porwal S; Lal S; Cheema S; Kalia VC PLoS One; 2009; 4(2):e4438. PubMed ID: 19212464 [TBL] [Abstract][Full Text] [Related]
35. Construction of probe of the plant growth-promoting bacteria Bacillus subtilis useful for fluorescence in situ hybridization. Posada LF; Alvarez JC; Hu CH; de-Bashan LE; Bashan Y J Microbiol Methods; 2016 Sep; 128():125-129. PubMed ID: 27263830 [TBL] [Abstract][Full Text] [Related]
36. Identification and Analysis of Informative Single Nucleotide Polymorphisms in 16S rRNA Gene Sequences of the Bacillus cereus Group. Hakovirta JR; Prezioso S; Hodge D; Pillai SP; Weigel LM J Clin Microbiol; 2016 Nov; 54(11):2749-2756. PubMed ID: 27582514 [TBL] [Abstract][Full Text] [Related]
37. phoR sequences as a phylogenetic marker to differentiate the species in the Bacillus subtilis group. Guo Q; Li S; Lu X; Li B; Stummer B; Dong W; Ma P Can J Microbiol; 2012 Nov; 58(11):1295-305. PubMed ID: 23145827 [TBL] [Abstract][Full Text] [Related]
38. Phylogenetic analysis of Bacillus sphaericus and development of an oligonucleotide probe specific for mosquito-pathogenic strains. Aquino de Muro M; Priest FG FEMS Microbiol Lett; 1993 Sep; 112(2):205-10. PubMed ID: 7691684 [TBL] [Abstract][Full Text] [Related]
39. [The identification of Bacillus cereus, Bacillus lichenformis and Bacillus subtilis strains using the coagglutination reaction]. Hellmann E; Stanzel C; Tonkaboni TF Berl Munch Tierarztl Wochenschr; 1994 Sep; 107(9):308-13. PubMed ID: 7980381 [TBL] [Abstract][Full Text] [Related]