These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 9621890)

  • 1. Fatigue of bone and bones: an analysis based on stressed volume.
    Taylor D
    J Orthop Res; 1998 Mar; 16(2):163-9. PubMed ID: 9621890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scaling effects in the fatigue strength of bones from different animals.
    Taylor D
    J Theor Biol; 2000 Sep; 206(2):299-306. PubMed ID: 10966766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Volume effects on yield strength of equine cortical bone.
    Bigley RF; Gibeling JC; Stover SM; Hazelwood SJ; Fyhrie DP; Martin RB
    J Mech Behav Biomed Mater; 2008 Oct; 1(4):295-302. PubMed ID: 19627794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Volume effects on fatigue life of equine cortical bone.
    Bigley RF; Gibeling JC; Stover SM; Hazelwood SJ; Fyhrie DP; Martin RB
    J Biomech; 2007; 40(16):3548-54. PubMed ID: 17632110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model of flexural fatigue damage accumulation for cortical bone.
    Griffin LV; Gibeling JC; Martin RB; Gibson VA; Stover SM
    J Orthop Res; 1997 Jul; 15(4):607-14. PubMed ID: 9379272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tensile fatigue in bone: are cycles-, or time to failure, or both, important?
    Zioupos P; Currey JD; Casinos A
    J Theor Biol; 2001 Jun; 210(3):389-99. PubMed ID: 11397140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of bone volume fraction and architecture on computed large-deformation failure mechanisms in human trabecular bone.
    Bevill G; Eswaran SK; Gupta A; Papadopoulos P; Keaveny TM
    Bone; 2006 Dec; 39(6):1218-25. PubMed ID: 16904959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dependence between the strength and stiffness of cancellous and cortical bone tissue for tension and compression: extension of a unifying principle.
    Yeni YN; Dong XN; Fyhrie DP; Les CM
    Biomed Mater Eng; 2004; 14(3):303-10. PubMed ID: 15299242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The prediction of stress fractures using a 'stressed volume' concept.
    Taylor D; Kuiper JH
    J Orthop Res; 2001 Sep; 19(5):919-26. PubMed ID: 11562142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compression data on bovine bone confirms that a "stressed volume" principle explains the variability of fatigue strength results.
    Taylor D; O'Brien F; Prina-Mello A; Ryan C; O'Reilly P; Lee TC
    J Biomech; 1999 Nov; 32(11):1199-203. PubMed ID: 10541070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of compact bone failure under two different loading rates: experimental and modelling approaches.
    Pithioux M; Subit D; Chabrand P
    Med Eng Phys; 2004 Oct; 26(8):647-53. PubMed ID: 15471692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The behaviour of microcracks in compact bone.
    O'brien FJ; Hardiman DA; Hazenberg JG; Mercy MV; Mohsin S; Taylor D; Lee TC
    Eur J Morphol; 2005; 42(1-2):71-9. PubMed ID: 16123026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Fatigue damage and repair in bone].
    Zhang C; Wu D; Guo Y; Guo T; Zhu X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Mar; 20(1):180-6. PubMed ID: 12744194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytical model of the fatigue characteristics of bone.
    Lafferty JF
    Aviat Space Environ Med; 1978 Jan; 49(1 Pt. 2):170-4. PubMed ID: 623581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deformation behaviour of bovine cancellous bone.
    Dendorfer S; Maier HJ; Hammer J
    Technol Health Care; 2006; 14(6):549-56. PubMed ID: 17148868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo strains in the femur of river cooter turtles (Pseudemys concinna) during terrestrial locomotion: tests of force-platform models of loading mechanics.
    Butcher MT; Espinoza NR; Cirilo SR; Blob RW
    J Exp Biol; 2008 Aug; 211(Pt 15):2397-407. PubMed ID: 18626073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone formation after damaging in vivo fatigue loading results in recovery of whole-bone monotonic strength and increased fatigue life.
    Silva MJ; Touhey DC
    J Orthop Res; 2007 Feb; 25(2):252-61. PubMed ID: 17106875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteon pullout in the equine third metacarpal bone: effects of ex vivo fatigue.
    Hiller LP; Stover SM; Gibson VA; Gibeling JC; Prater CS; Hazelwood SJ; Yeh OC; Martin RB
    J Orthop Res; 2003 May; 21(3):481-8. PubMed ID: 12706021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fatigue data analysis of canine femurs under four-point bending.
    Pidaparti RM; Akyuz U; Naick PA; Burr DB
    Biomed Mater Eng; 2000; 10(1):43-50. PubMed ID: 10950206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.