BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 9622192)

  • 1. The functional emergence of prefrontally-guided working memory systems in four- to eight-year-old children.
    Luciana M; Nelson CA
    Neuropsychologia; 1998 Mar; 36(3):273-93. PubMed ID: 9622192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Working memory performance in typically developing children and adolescents: behavioral evidence of protracted frontal lobe development.
    Conklin HM; Luciana M; Hooper CJ; Yarger RS
    Dev Neuropsychol; 2007; 31(1):103-28. PubMed ID: 17305440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of neuropsychological function through use of the Cambridge Neuropsychological Testing Automated Battery: performance in 4- to 12-year-old children.
    Luciana M; Nelson CA
    Dev Neuropsychol; 2002; 22(3):595-624. PubMed ID: 12661972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study of performance on tests from the CANTAB battery sensitive to frontal lobe dysfunction in a large sample of normal volunteers: implications for theories of executive functioning and cognitive aging. Cambridge Neuropsychological Test Automated Battery.
    Robbins TW; James M; Owen AM; Sahakian BJ; Lawrence AD; McInnes L; Rabbitt PM
    J Int Neuropsychol Soc; 1998 Sep; 4(5):474-90. PubMed ID: 9745237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frontal-striatal cognitive deficits in patients with chronic schizophrenia.
    Pantelis C; Barnes TR; Nelson HE; Tanner S; Weatherley L; Owen AM; Robbins TW
    Brain; 1997 Oct; 120 ( Pt 10)():1823-43. PubMed ID: 9365373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurobehavioral evidence for working-memory deficits in school-aged children with histories of prematurity.
    Luciana M; Lindeke L; Georgieff M; Mills M; Nelson CA
    Dev Med Child Neurol; 1999 Aug; 41(8):521-33. PubMed ID: 10479041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental fractionation of working memory and response inhibition during childhood.
    Tsujimoto S; Kuwajima M; Sawaguchi T
    Exp Psychol; 2007; 54(1):30-7. PubMed ID: 17341012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systemic sulpiride in young adult volunteers simulates the profile of cognitive deficits in Parkinson's disease.
    Mehta MA; Sahakian BJ; McKenna PJ; Robbins TW
    Psychopharmacology (Berl); 1999 Sep; 146(2):162-74. PubMed ID: 10525751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reorganization of frontal systems used by alcoholics for spatial working memory: an fMRI study.
    Pfefferbaum A; Desmond JE; Galloway C; Menon V; Glover GH; Sullivan EV
    Neuroimage; 2001 Jul; 14(1 Pt 1):7-20. PubMed ID: 11525339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissociable roles of prefrontal subregions in self-ordered working memory performance.
    Chase HW; Clark L; Sahakian BJ; Bullmore ET; Robbins TW
    Neuropsychologia; 2008 Sep; 46(11):2650-61. PubMed ID: 18556028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activity in human frontal cortex associated with spatial working memory and saccadic behavior.
    Postle BR; Berger JS; Taich AM; D'Esposito M
    J Cogn Neurosci; 2000; 12 Suppl 2():2-14. PubMed ID: 11506643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurocognitive development of the ability to manipulate information in working memory.
    Crone EA; Wendelken C; Donohue S; van Leijenhorst L; Bunge SA
    Proc Natl Acad Sci U S A; 2006 Jun; 103(24):9315-20. PubMed ID: 16738055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A sex difference on a novel spatial working memory task in humans.
    Duff SJ; Hampson E
    Brain Cogn; 2001 Dec; 47(3):470-93. PubMed ID: 11748902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of cognitive control and executive functions from 4 to 13 years: evidence from manipulations of memory, inhibition, and task switching.
    Davidson MC; Amso D; Anderson LC; Diamond A
    Neuropsychologia; 2006; 44(11):2037-78. PubMed ID: 16580701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of human prefrontal cortex during spatial and nonspatial working memory tasks measured by functional MRI.
    McCarthy G; Puce A; Constable RT; Krystal JH; Gore JC; Goldman-Rakic P
    Cereb Cortex; 1996; 6(4):600-11. PubMed ID: 8670685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequential neural processes of tactile-visual crossmodal working memory.
    Ohara S; Lenz F; Zhou YD
    Neuroscience; 2006 Apr; 139(1):299-309. PubMed ID: 16324794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The development of nonverbal working memory and executive control processes in adolescents.
    Luciana M; Conklin HM; Hooper CJ; Yarger RS
    Child Dev; 2005; 76(3):697-712. PubMed ID: 15892787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Executive functioning in adults and children with developmental dyslexia.
    Brosnan M; Demetre J; Hamill S; Robson K; Shepherd H; Cody G
    Neuropsychologia; 2002; 40(12):2144-55. PubMed ID: 12208010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How verbal and spatial manipulation networks contribute to calculation: an fMRI study.
    Zago L; Petit L; Turbelin MR; Andersson F; Vigneau M; Tzourio-Mazoyer N
    Neuropsychologia; 2008; 46(9):2403-14. PubMed ID: 18406434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental neural networks in children performing a Categorical N-Back Task.
    Ciesielski KT; Lesnik PG; Savoy RL; Grant EP; Ahlfors SP
    Neuroimage; 2006 Nov; 33(3):980-90. PubMed ID: 16997580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.