These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 9622462)

  • 1. A finite-element model predicts thermal damage in cutaneous contact burns.
    Orgill DP; Solari MG; Barlow MS; O'Connor NE
    J Burn Care Rehabil; 1998; 19(3):203-9. PubMed ID: 9622462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of thermal properties and geometrical dimensions on skin burn injuries.
    Jiang SC; Ma N; Li HJ; Zhang XX
    Burns; 2002 Dec; 28(8):713-7. PubMed ID: 12464468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel burn device for rapid, reproducible burn wound generation.
    Kim JY; Dunham DM; Supp DM; Sen CK; Powell HM
    Burns; 2016 Mar; 42(2):384-91. PubMed ID: 26803369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of skin burn injury. Part 2: Parametric and sensitivity analysis.
    Ng EY; Chua LT
    Proc Inst Mech Eng H; 2002; 216(3):171-83. PubMed ID: 12137284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesh-independent prediction of skin burns injury.
    Ng EY; Chua LT
    J Med Eng Technol; 2000; 24(6):255-61. PubMed ID: 11315652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of comparable scald and contact burns in a porcine model: A preliminary report.
    Singer AJ; Zhou JW; Osman OB; Harris ZB; Khani ME; Baer E; Zhang N; McClain SA; Arbab MH
    Wound Repair Regen; 2020 Nov; 28(6):789-796. PubMed ID: 32729128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro burn model illustrating heat conduction patterns using compressed thermal papers.
    Lee JY; Jung SN; Kwon H
    Wound Repair Regen; 2015; 23(1):124-31. PubMed ID: 25421614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The progression of burn depth in experimental burns: a histological and methodological study.
    Papp A; Kiraly K; Härmä M; Lahtinen T; Uusaro A; Alhava E
    Burns; 2004 Nov; 30(7):684-90. PubMed ID: 15475143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boundary element method with bioheat equation for skin burn injury.
    Ng EY; Tan HM; Ooi EH
    Burns; 2009 Nov; 35(7):987-97. PubMed ID: 19427127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of skin burn injury. Part 1: Numerical modelling.
    Ng EY; Chua LT
    Proc Inst Mech Eng H; 2002; 216(3):157-70. PubMed ID: 12137283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating the time and temperature relationship for causation of deep-partial thickness skin burns.
    Abraham JP; Plourde B; Vallez L; Stark J; Diller KR
    Burns; 2015 Dec; 41(8):1741-1747. PubMed ID: 26188899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence-based injury prediction data for the water temperature and duration of exposure for clinically relevant deep dermal scald injuries.
    Andrews CJ; Kimble RM; Kempf M; Cuttle L
    Wound Repair Regen; 2017 Sep; 25(5):792-804. PubMed ID: 28857337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Creation of rapid and reproducible burn in animal model with a newly developed burn device.
    Shukla SK; Sharma AK; Shaw P; Kalonia A; Yashavarddhan MH; Singh S
    Burns; 2020 Aug; 46(5):1142-1149. PubMed ID: 32169381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature and burn injury prediction of human skin exposed to microwaves: a model analysis.
    Ozen S; Helhel S; Bilgin S
    Radiat Environ Biophys; 2011 Aug; 50(3):483-9. PubMed ID: 21533655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling early thermal injury using an ex vivo human skin model of contact burns.
    Liu A; Ocotl E; Karim A; Wolf JJ; Cox BL; Eliceiri KW; Gibson ALF
    Burns; 2021 May; 47(3):611-620. PubMed ID: 33279338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How to cool a burn: a heat transfer point of view.
    Baldwin A; Xu J; Attinger D
    J Burn Care Res; 2012; 33(2):176-87. PubMed ID: 22210055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Importance of cutaneous cooling during photothermal epilation: theoretical and practical considerations.
    Klavuhn KG; Green D
    Lasers Surg Med; 2002; 31(2):97-105. PubMed ID: 12210593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transmission line matrix modelling of thermal injuries to skin.
    Aliouat Bellia S; Saidane A; Hamou A; Benzohra M; Saiter JM
    Burns; 2008 Aug; 34(5):688-97. PubMed ID: 18321649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of one- and two-dimensional programmes for predicting the state of skin burns.
    Ng EY; Chua LT
    Burns; 2002 Feb; 28(1):27-34. PubMed ID: 11834326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A finite element model of burn injury in blood-perfused skin.
    Diller KR; Hayes LJ
    J Biomech Eng; 1983 Aug; 105(3):300-7. PubMed ID: 6632835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.