These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 9622462)

  • 21. Preclinical assessment of safety and efficacy of intravenous delivery of autologous adipose-derived regenerative cells (ADRCs) in the treatment of severe thermal burns using a porcine model.
    Foubert P; Liu M; Anderson S; Rajoria R; Gutierrez D; Zafra D; Tenenhaus M; Fraser JK
    Burns; 2018 Sep; 44(6):1531-1542. PubMed ID: 29958745
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparation of Partial-Thickness Burn Wounds in Rodents Using a New Experimental Burning Device.
    Sakamoto M; Morimoto N; Ogino S; Jinno C; Kawaguchi A; Kawai K; Suzuki S
    Ann Plast Surg; 2016 Jun; 76(6):652-8. PubMed ID: 27176561
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The pig as an experimental model for mid-dermal burns research.
    Sheu SY; Wang WL; Fu YT; Lin SC; Lei YC; Liao JH; Tang NY; Kuo TF; Yao CH
    Burns; 2014 Dec; 40(8):1679-88. PubMed ID: 24908180
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Forward-looking infrared imaging predicts ultimate burn depth in a porcine vertical injury progression model.
    Miccio J; Parikh S; Marinaro X; Prasad A; McClain S; Singer AJ; Clark RA
    Burns; 2016 Mar; 42(2):397-404. PubMed ID: 26775220
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Does pressure matter in creating burns in a porcine model?
    Singer AJ; Taira BR; Anderson R; McClain SA; Rosenberg L
    J Burn Care Res; 2010; 31(4):646-51. PubMed ID: 20616654
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tissue burns due to contact between a skin surface and highly conducting metallic media in the presence of inter-tissue boiling.
    Abraham JP; Stark J; Gorman J; Sparrow E; Minkowycz WJ
    Burns; 2019 Mar; 45(2):369-378. PubMed ID: 30327231
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Standardized burn model using a multiparametric histologic analysis of burn depth.
    Singer AJ; Berruti L; Thode HC; McClain SA
    Acad Emerg Med; 2000 Jan; 7(1):1-6. PubMed ID: 10894235
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermal injury secondary to laparoscopic fiber-optic cables.
    Hindle AK; Brody F; Hopkins V; Rosales G; Gonzalez F; Schwartz A
    Surg Endosc; 2009 Aug; 23(8):1720-3. PubMed ID: 19030930
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Histopathological evaluation of scalds and contact burns in the pig model.
    Brans TA; Dutrieux RP; Hoekstra MJ; Kreis RW; du Pont JS
    Burns; 1994; 20 Suppl 1():S48-51. PubMed ID: 8198744
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Autofluorescence of skin burns detected by fiber-optic confocal imaging: evidence that cool water treatment limits progressive thermal damage in anesthetized hairless mice.
    Vo LT; Anikijenko P; McLaren WJ; Delaney PM; Barkla DH; King RG
    J Trauma; 2001 Jul; 51(1):98-104. PubMed ID: 11468475
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The morphology of cutaneous burn injuries and the type of heat application.
    Fracasso T; Pfeiffer H; Pellerin P; Karger B
    Forensic Sci Int; 2009 May; 187(1-3):81-6. PubMed ID: 19346085
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Histopathologic staining of low temperature cutaneous burns: comparing biomarkers of epithelial and vascular injury reveals utility of HMGB1 and hematoxylin phloxine saffron.
    Hirth DA; Singer AJ; Clark RA; McClain SA
    Wound Repair Regen; 2012; 20(6):918-27. PubMed ID: 23126459
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of the depth of burn injury by collagen stainability.
    Chvapil M; Speer DP; Owen JA; Chvapil TA
    Plast Reconstr Surg; 1984 Mar; 73(3):438-41. PubMed ID: 6199804
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Imaging acute thermal burns by photoacoustic microscopy.
    Zhang HF; Maslov K; Stoica G; Wang LV
    J Biomed Opt; 2006; 11(5):054033. PubMed ID: 17092182
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcriptional responses associated with sulfur mustard and thermal burns in porcine skin.
    Rogers JV; McDougal JN; Price JA; Reid FM; Graham JS
    Cutan Ocul Toxicol; 2008; 27(3):135-60. PubMed ID: 18988085
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Skin burns after laser exposure: histological analysis and predictive simulation.
    Museux N; Perez L; Autrique L; Agay D
    Burns; 2012 Aug; 38(5):658-67. PubMed ID: 22237052
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of a combined radiation and full thickness burn injury minipig model to study the effects of uncultured adipose-derived regenerative cell therapy in wound healing.
    Foubert P; Doyle-Eisele M; Gonzalez A; Berard F; Weber W; Zafra D; Alfonso Z; Zhao S; Tenenhaus M; Fraser JK
    Int J Radiat Biol; 2017 Mar; 93(3):340-350. PubMed ID: 27690716
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Progression of thermal injury: a morphologic study.
    deCamara DL; Raine TJ; London MD; Robson MC; Heggers JP
    Plast Reconstr Surg; 1982 Mar; 69(3):491-9. PubMed ID: 7063572
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling of soft tissue thermal damage based on GPU acceleration.
    Zhang J; Hills J; Zhong Y; Shirinzadeh B; Smith J; Gu C
    Comput Assist Surg (Abingdon); 2019 Oct; 24(sup1):5-12. PubMed ID: 31340685
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Examination of the Early Diagnostic Applicability of Active Dynamic Thermography for Burn Wound Depth Assessment and Concept Analysis.
    Prindeze NJ; Fathi P; Mino MJ; Mauskar NA; Travis TE; Paul DW; Moffatt LT; Shupp JW
    J Burn Care Res; 2015; 36(6):626-35. PubMed ID: 25412050
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.