These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 9622462)

  • 41. Examination of the Early Diagnostic Applicability of Active Dynamic Thermography for Burn Wound Depth Assessment and Concept Analysis.
    Prindeze NJ; Fathi P; Mino MJ; Mauskar NA; Travis TE; Paul DW; Moffatt LT; Shupp JW
    J Burn Care Res; 2015; 36(6):626-35. PubMed ID: 25412050
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ultrasonic determination of thermodynamic threshold parameters for irreversible cutaneous burns.
    Cantrell JH
    J Acoust Soc Am; 1982 Aug; 72(2):337-9. PubMed ID: 7119276
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Thermal injury models for optical treatment of biological tissues: a comparative study.
    Fanjul-Velez F; Ortega-Quijano N; Salas-Garcia I; Arce-Diego JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():532-5. PubMed ID: 21095661
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparative study of 1,064-nm laser-induced skin burn and thermal skin burn.
    Zhang YM; Ruan J; Xiao R; Zhang Q; Huang YS
    Cell Biochem Biophys; 2013; 67(3):1005-14. PubMed ID: 23559275
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Histological and modeling study of skin thermal injury to 2.0 microm laser irradiation.
    Chen B; Thomsen SL; Thomas RJ; Oliver J; Welch AJ
    Lasers Surg Med; 2008 Jul; 40(5):358-70. PubMed ID: 18563778
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Antecedent thermal injury worsens split-thickness skin graft quality: A clinically relevant porcine model of full-thickness burn, excision and grafting.
    Carlsson AH; Rose LF; Fletcher JL; Wu JC; Leung KP; Chan RK
    Burns; 2017 Feb; 43(1):223-231. PubMed ID: 27600980
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An automated high-throughput platform for experimental study of burn injuries - in vitro and ex vivo.
    Melnikov N; Kobel P; Detinis T; Segni AD; Leichtmann-Bardoogo Y; Haik J; Maoz BM
    Burns; 2023 Aug; 49(5):1170-1180. PubMed ID: 36195492
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Cutaneous Inflammatory Response to Thermal Burn Injury in a Murine Model.
    Lateef Z; Stuart G; Jones N; Mercer A; Fleming S; Wise L
    Int J Mol Sci; 2019 Jan; 20(3):. PubMed ID: 30696002
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A review of the evidence for threshold of burn injury.
    Martin NA; Falder S
    Burns; 2017 Dec; 43(8):1624-1639. PubMed ID: 28536038
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The uncertainty in burn prediction as a result of variable skin parameters: an experimental evaluation of burn-protective outfits.
    Gasperin M; Juricić D
    Burns; 2009 Nov; 35(7):970-82. PubMed ID: 19446961
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The relative thermal stability of tissue macromolecules and cellular structure in burn injury.
    Despa F; Orgill DP; Neuwalder J; Lee RC
    Burns; 2005 Aug; 31(5):568-77. PubMed ID: 15993302
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Thermal damage to the skin from 8.2 and 95 GHz microwave exposures in swine.
    Parker JE; Butterworth JW; Rodriguez RA; Kowalczewski CJ; Christy RJ; Voorhees WB; Payne JA; Whitmore JN
    Biomed Phys Eng Express; 2024 May; 10(4):. PubMed ID: 38718784
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Finite element simulation and experimental validation of thermal damage to isolated porcine skin tissue by femtosecond laser welding.
    Huang J; Jia M; Li Y; Yan M; Wang K; Li X
    J Biophotonics; 2024 Sep; 17(9):e202400224. PubMed ID: 39049557
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The effects of topical nitric oxide on healing of partial thickness porcine burns.
    Singer AJ; Choi Y; Rashel M; Toussaint J; McClain SA
    Burns; 2018 Mar; 44(2):423-428. PubMed ID: 28869060
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of burn location and investigator on burn depth in a porcine model.
    Singer AJ; Toussaint J; Chung WT; Thode HC; McClain S; Raut V
    Burns; 2016 Feb; 42(1):184-189. PubMed ID: 26507518
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A 3D finite element model for hyperthermia injury of blood-perfused skin.
    Ratovoson D; Huon V; Jourdan F
    Comput Methods Biomech Biomed Engin; 2015; 18(3):233-42. PubMed ID: 23768152
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Prediction of skin burn injury. Part 1: numerical modelling; part 2: parametric and sensitivity analysis.
    Lawton B; Laird MP
    Proc Inst Mech Eng H; 2002; 216(6):425-6; discussion 426-7. PubMed ID: 12502007
    [No Abstract]   [Full Text] [Related]  

  • 58. Development of a precise experimental burn model.
    Singh M; Nuutila K; Minasian R; Kruse C; Eriksson E
    Burns; 2016 Nov; 42(7):1507-1512. PubMed ID: 27450518
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hot soup! Correlating the severity of liquid scald burns to fluid and biomedical properties.
    Loller C; Buxton GA; Kerzmann TL
    Burns; 2016 May; 42(3):589-97. PubMed ID: 26796241
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Skin biothermomechanics for medical treatments.
    Xu F; Wen T; Lu TJ; Seffen KA
    J Mech Behav Biomed Mater; 2008 Apr; 1(2):172-87. PubMed ID: 19627782
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.