These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 9622485)
1. Tyrosine 64 of cytochrome c553 is required for electron exchange with formate dehydrogenase in Desulfovibrio vulgaris Hildenborough. Sebban-Kreuzer C; Blackledge M; Dolla A; Marion D; Guerlesquin F Biochemistry; 1998 Jun; 37(23):8331-40. PubMed ID: 9622485 [TBL] [Abstract][Full Text] [Related]
2. The formate dehydrogenase-cytochrome c553 complex from Desulfovibrio vulgaris Hildenborough. Sebban-Kreuzer C; Dolla A; Guerlesquin F Eur J Biochem; 1998 May; 253(3):645-52. PubMed ID: 9654061 [TBL] [Abstract][Full Text] [Related]
3. Comparison of low oxidoreduction potential cytochrome c553 from Desulfovibrio vulgaris with the class I cytochrome c family. Blackledge MJ; Guerlesquin F; Marion D Proteins; 1996 Feb; 24(2):178-94. PubMed ID: 8820485 [TBL] [Abstract][Full Text] [Related]
4. Role of the tetrahemic subunit in Desulfovibrio vulgaris hildenborough formate dehydrogenase. ElAntak L; Dolla A; Durand MC; Bianco P; Guerlesquin F Biochemistry; 2005 Nov; 44(45):14828-34. PubMed ID: 16274230 [TBL] [Abstract][Full Text] [Related]
5. Replacement of lysine 45 by uncharged residues modulates the redox-Bohr effect in tetraheme cytochrome c3 of Desulfovibrio vulgaris (Hildenborough). Saraiva LM; Salgueiro CA; da Costa PN; Messias AC; LeGall J; van Dongen WM; Xavier AV Biochemistry; 1998 Sep; 37(35):12160-5. PubMed ID: 9724528 [TBL] [Abstract][Full Text] [Related]
6. Study of the new stability properties induced by amino acid replacement of tyrosine 64 in cytochrome C553 from Desulfovibrio vulgaris Hildenborough using electrospray ionization mass spectrometry. Guy P; Rémigy H; Jaquinod M; Bersch B; Blanchard L; Dolla A; Forest E Biochem Biophys Res Commun; 1996 Jan; 218(1):97-103. PubMed ID: 8573183 [TBL] [Abstract][Full Text] [Related]
7. The type I/type II cytochrome c3 complex: an electron transfer link in the hydrogen-sulfate reduction pathway. Pieulle L; Morelli X; Gallice P; Lojou E; Barbier P; Czjzek M; Bianco P; Guerlesquin F; Hatchikian EC J Mol Biol; 2005 Nov; 354(1):73-90. PubMed ID: 16226767 [TBL] [Abstract][Full Text] [Related]
8. Effects of the Tyr64 substitution on the stability of cytochrome c553, a low oxidoreduction-potential cytochrome from Desulfovibrio vulgaris Hildenborough. Blanchard L; Dolla A; Bersch B; Forest E; Bianco P; Wall J; Marion D; Guerlesquin F Eur J Biochem; 1994 Dec; 226(2):423-32. PubMed ID: 8001560 [TBL] [Abstract][Full Text] [Related]
9. Structural and kinetic studies of the Y73E mutant of octaheme cytochrome c3 (Mr = 26 000) from Desulfovibrio desulfuricans Norway. Aubert C; Giudici-Orticoni MT; Czjzek M; Haser R; Bruschi M; Dolla A Biochemistry; 1998 Feb; 37(8):2120-30. PubMed ID: 9485359 [TBL] [Abstract][Full Text] [Related]
10. Equilibrium unfolding of a small low-potential cytochrome, cytochrome c553 from Desulfovibrio vulgaris. Wittung-Stafshede P Protein Sci; 1999 Jul; 8(7):1523-9. PubMed ID: 10422842 [TBL] [Abstract][Full Text] [Related]
11. Roles of noncoordinated aromatic residues in redox regulation of cytochrome c3 from Desulfovibrio vulgaris Miyazaki F. Takayama Y; Harada E; Kobayashi R; Ozawa K; Akutsu H Biochemistry; 2004 Aug; 43(34):10859-66. PubMed ID: 15323546 [TBL] [Abstract][Full Text] [Related]
12. The cumulative electrostatic effect of aromatic stacking interactions and the negative electrostatic environment of the flavin mononucleotide binding site is a major determinant of the reduction potential for the flavodoxin from Desulfovibrio vulgaris [Hildenborough]. Zhou Z; Swenson RP Biochemistry; 1996 Dec; 35(50):15980-8. PubMed ID: 8973168 [TBL] [Abstract][Full Text] [Related]
13. Redox interaction of cytochrome c3 with [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F. Yahata N; Saitoh T; Takayama Y; Ozawa K; Ogata H; Higuchi Y; Akutsu H Biochemistry; 2006 Feb; 45(6):1653-62. PubMed ID: 16460012 [TBL] [Abstract][Full Text] [Related]
14. Mutation of tyrosine-67 to phenylalanine in cytochrome c significantly alters the local heme environment. Berghuis AM; Guillemette JG; Smith M; Brayer GD J Mol Biol; 1994 Jan; 235(4):1326-41. PubMed ID: 8308895 [TBL] [Abstract][Full Text] [Related]
15. Structure and dynamics of ferrocytochrome c553 from Desulfovibrio vulgaris studied by NMR spectroscopy and restrained molecular dynamics. Blackledge MJ; Medvedeva S; Poncin M; Guerlesquin F; Bruschi M; Marion D J Mol Biol; 1995 Feb; 245(5):661-81. PubMed ID: 7844834 [TBL] [Abstract][Full Text] [Related]
16. Key role of phenylalanine 20 in cytochrome c3: structure, stability, and function studies. Dolla A; Arnoux P; Protasevich I; Lobachov V; Brugna M; Giudici-Orticoni MT; Haser R; Czjzek M; Makarov A; Bruschi M Biochemistry; 1999 Jan; 38(1):33-41. PubMed ID: 9890880 [TBL] [Abstract][Full Text] [Related]
17. Ferredoxin electron transfer site on cytochrome c3. Structural hypothesis of an intramolecular electron transfer pathway within a tetra-heme cytochrome. Dolla A; Guerlesquin F; Bruschi M; Haser R J Mol Recognit; 1991 Feb; 4(1):27-33. PubMed ID: 1657066 [TBL] [Abstract][Full Text] [Related]
18. Redox-coupled conformational alternations in cytochrome c(3) from D. vulgaris Miyazaki F on the basis of its reduced solution structure. Harada E; Fukuoka Y; Ohmura T; Fukunishi A; Kawai G; Fujiwara T; Akutsu H J Mol Biol; 2002 Jun; 319(3):767-78. PubMed ID: 12054869 [TBL] [Abstract][Full Text] [Related]
19. The function of tyrosine 74 of cytochrome b5. Vergères G; Chen DY; Wu FF; Waskell L Arch Biochem Biophys; 1993 Sep; 305(2):231-41. PubMed ID: 8373159 [TBL] [Abstract][Full Text] [Related]