These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 9622523)

  • 1. Kinetics of ferrous iron oxidation by Leptospirillum bacteria in continuous cultures.
    van Scherpenzeel DA; Boon M; Ras C; Hansford GS; Heijnen JJ
    Biotechnol Prog; 1998; 14(3):425-33. PubMed ID: 9622523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic and kinetic characterization using process dynamics: acidophilic ferrous iron oxidation by Leptospirillum ferrooxidans.
    Kleerebezem R; van Loosdrecht MC
    Biotechnol Bioeng; 2008 May; 100(1):49-60. PubMed ID: 18080344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-rate acidophilic ferrous iron oxidation in a biofilm airlift reactor and the role of the carrier material.
    Ebrahimi S; Fernández Morales FJ; Kleerebezem R; Heijnen JJ; van Loosdrecht MC
    Biotechnol Bioeng; 2005 May; 90(4):462-72. PubMed ID: 15772947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of temperature on the continuous ferrous-iron oxidation kinetics of a predominantly Leptospirillum ferrooxidans culture.
    Breed AW; Dempers CJ; Searby GE; Gardner MN; Rawlings DE; Hansford GS
    Biotechnol Bioeng; 1999 Oct; 65(1):44-53. PubMed ID: 10440670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling of ferrous iron oxidation by a Leptospirillum ferrooxidans-dominated chemostat culture.
    Sundkvist JE; Gahan CS; Sandström A
    Biotechnol Bioeng; 2008 Feb; 99(2):378-89. PubMed ID: 17615557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heat flux measurements for the fast monitoring of dynamic responses to glucose additions by yeasts that were subjected to different feeding regimes in continuous culture.
    van Kleeff BH; Kuenen JG; Heijnen JJ
    Biotechnol Prog; 1996; 12(4):510-8. PubMed ID: 8987477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel electrochemical-enzymatic model which quantifies the effect of the solution Eh on the kinetics of ferrous iron oxidation with Acidithiobacillus ferrooxidans.
    Meruane G; Salhe C; Wiertz J; Vargas T
    Biotechnol Bioeng; 2002 Nov; 80(3):280-8. PubMed ID: 12226860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of iron oxidation by Leptospirillum ferriphilum dominated culture at pH below one.
    Ozkaya B; Sahinkaya E; Nurmi P; Kaksonen AH; Puhakka JA
    Biotechnol Bioeng; 2007 Aug; 97(5):1121-7. PubMed ID: 17187444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ferrous iron oxidation and uranium extraction by Thiobacillus ferrooxidans.
    Guay R; Silver M; Torma AE
    Biotechnol Bioeng; 1977 May; 19(5):727-40. PubMed ID: 857953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Dependence of the rate of ferrous oxide oxidation by a Thiobacillus ferrooxidans culture on its concentration].
    Kovrov BG; Denisov GV; Sekacheva LG
    Mikrobiologiia; 1978; 47(3):400-2. PubMed ID: 672678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of chloride on ferrous iron oxidation by a Leptospirillum ferriphilum-dominated chemostat culture.
    Gahan CS; Sundkvist JE; Dopson M; Sandström A
    Biotechnol Bioeng; 2010 Jun; 106(3):422-31. PubMed ID: 20198654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mathematical model of the oxidation of ferrous iron by a biofilm of Thiobacillus ferrooxidans.
    Mesa MM; Macías M; Cantero D
    Biotechnol Prog; 2002; 18(4):679-85. PubMed ID: 12153298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous biological ferrous iron oxidation in a submerged membrane bioreactor.
    Park D; Lee DS; Park JM
    Water Sci Technol; 2005; 51(6-7):59-68. PubMed ID: 16003962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of Fe3+ ions on Thiobacillus ferrooxidans oxidation of ferrous oxide at various temperatures].
    Kovalenko TV; Karavaĭko GI; Piskunov VP
    Mikrobiologiia; 1982; 51(1):156-60. PubMed ID: 7070305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an optimal medium for continuous ferrous iron oxidation by immobilized Acidothiobacillus ferrooxidans cells.
    Kim TW; Kim CJ; Chang YK; Ryu HW; Cho KS
    Biotechnol Prog; 2002; 18(4):752-9. PubMed ID: 12153309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of ferric iron generation by different species of acidophilic bacteria immobilized in packed-bed reactors.
    Rowe OF; Johnson DB
    Syst Appl Microbiol; 2008 Mar; 31(1):68-77. PubMed ID: 17983721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-rate ferric sulfate generation by a Leptospirillum ferriphilum-dominated biofilm and the role of jarosite in biomass retention in a fluidized-bed reactor.
    Kinnunen PH; Puhakka JA
    Biotechnol Bioeng; 2004 Mar; 85(7):697-705. PubMed ID: 14991647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Competition for oxygen by iron and 2,4,6-trichlorophenol oxidizing bacteria in boreal groundwater.
    Langwaldt JH; Puhakka JA
    Water Res; 2003 Mar; 37(6):1378-84. PubMed ID: 12598200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stoichiometric model and metabolic flux analysis for Leptospirillum ferrooxidans.
    Merino MP; Andrews BA; Asenjo JA
    Biotechnol Bioeng; 2010 Nov; 107(4):696-706. PubMed ID: 20589851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of uncouplers on endogenous respiration and ferrous iron oxidation in a chemolithoautotrophic bacterium Acidithiobacillus (Thiobacillus) ferrooxidans.
    Chen Y; Suzuki I
    FEMS Microbiol Lett; 2004 Aug; 237(1):139-45. PubMed ID: 15268949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.