These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 9622523)
21. Physiology of the yeast Kluyveromyces marxianus during batch and chemostat cultures with glucose as the sole carbon source. Fonseca GG; Gombert AK; Heinzle E; Wittmann C FEMS Yeast Res; 2007 May; 7(3):422-35. PubMed ID: 17233766 [TBL] [Abstract][Full Text] [Related]
22. Selection of Leptospirillum ferrooxidans SRPCBL and development for enhanced ferric regeneration in stirred tank and airlift column reactor. Dave SR Bioresour Technol; 2008 Nov; 99(16):7803-6. PubMed ID: 18325759 [TBL] [Abstract][Full Text] [Related]
23. Xylose metabolism in Debaryomyces hansenii UFV-170. Effect of the specific oxygen uptake rate. Sampaio FC; Torre P; Passos FM; Perego P; Passos FJ; Converti A Biotechnol Prog; 2004; 20(6):1641-50. PubMed ID: 15575694 [TBL] [Abstract][Full Text] [Related]
24. Effects of citrinin on iron-redox cycle. Da Lozzo EJ; Mangrich AS; Rocha ME; de Oliveira MB; Carnieri EG Cell Biochem Funct; 2002 Mar; 20(1):19-29. PubMed ID: 11835267 [TBL] [Abstract][Full Text] [Related]
25. [Balance of macroergic compounds during the growth of Thiobacillus ferrooxidans]. Ivanov VN Mikrobiologiia; 1986; 55(5):768-74. PubMed ID: 3102905 [TBL] [Abstract][Full Text] [Related]
26. Numerical modeling of ferrous-ion oxidation rate in Acidithiobacillus ferrooxidans ATCC 23270: optimization of culture conditions through statistically designed experiments. Abdel-Fattah YR; Abdel-Fattah WR; Zamilpa R; Pierce JR Acta Microbiol Pol; 2002; 51(3):225-35. PubMed ID: 12588097 [TBL] [Abstract][Full Text] [Related]
27. Ferrous iron oxidation by foam immobilized Acidithiobacillus ferrooxidans: Experiments and modeling. Jaisankar S; Modak JM Biotechnol Prog; 2009; 25(5):1328-42. PubMed ID: 19610075 [TBL] [Abstract][Full Text] [Related]
28. Kinetics of chemoheterotrophic microbially mediated reduction of ferric EDTA and the nitrosyl adduct of ferrous EDTA for the treatment and regeneration of spent nitric oxide scrubber liquor. Dilmore R; Neufeld RD; Hammack RW Water Environ Res; 2007 May; 79(5):479-87. PubMed ID: 17571837 [TBL] [Abstract][Full Text] [Related]
29. Continuous microbial desulfurization of coal--application of a multistage slurry reactor and analysis of the interactions of microbial and chemical kinetics. Uhl W; Höne HJ; Beyer M; Klein J Biotechnol Bioeng; 1989 Dec; 34(11):1341-56. PubMed ID: 18588077 [TBL] [Abstract][Full Text] [Related]
30. Kinetics of ferrous iron oxidation by batch and continuous cultures of thermoacidophilic Archaea at extremely low pH of 1.1-1.3. Gonzalez-Contreras P; Weijma J; Buisman CJ Appl Microbiol Biotechnol; 2012 Feb; 93(3):1295-303. PubMed ID: 21751006 [TBL] [Abstract][Full Text] [Related]
31. The effect of CO2 availability on the growth, iron oxidation and CO2-fixation rates of pure cultures of Leptospirillum ferriphilum and Acidithiobacillus ferrooxidans. Bryan CG; Davis-Belmar CS; van Wyk N; Fraser MK; Dew D; Rautenbach GF; Harrison ST Biotechnol Bioeng; 2012 Jul; 109(7):1693-703. PubMed ID: 22383083 [TBL] [Abstract][Full Text] [Related]
32. An electrochemical method of measuring the oxidation rate of ferrous to ferric iron with oxygen in the presence of Thiobacillus ferrooxidans. Pesic B; Oliver DJ; Wichlacz P Biotechnol Bioeng; 1989 Jan; 33(4):428-39. PubMed ID: 18587934 [TBL] [Abstract][Full Text] [Related]
33. Experimental and mathematical modeling studies on Cr(VI) reduction by CRB, SRB and IRB, individually and in combination. Somasundaram V; Philip L; Bhallamudi SM J Hazard Mater; 2009 Dec; 172(2-3):606-17. PubMed ID: 19692172 [TBL] [Abstract][Full Text] [Related]
34. A kinetic model for biological oxidation of ferrous iron by Thiobacillus ferrooxidans. Nemati M; Webb C Biotechnol Bioeng; 1997 Mar; 53(5):478-86. PubMed ID: 18634043 [TBL] [Abstract][Full Text] [Related]
35. Evidence that the potential for dissimilatory ferric iron reduction is widespread among acidophilic heterotrophic bacteria. Coupland K; Johnson DB FEMS Microbiol Lett; 2008 Feb; 279(1):30-5. PubMed ID: 18081844 [TBL] [Abstract][Full Text] [Related]
36. Relative contributions of biological and chemical reactions to the overall rate of pyrite oxidation at temperatures between 30 degrees C and 70 degrees C. Boogerd FC; van den Beemd C; Stoelwinder T; Bos P; Kuenen JG Biotechnol Bioeng; 1991 Jun; 38(2):109-15. PubMed ID: 18600740 [TBL] [Abstract][Full Text] [Related]
37. Modeling aerobic carbon oxidation and storage by integrating respirometric, titrimetric, and off-gas CO2 measurements. Pratt S; Yuan Z; Keller J Biotechnol Bioeng; 2004 Oct; 88(2):135-47. PubMed ID: 15449301 [TBL] [Abstract][Full Text] [Related]
38. Effects of electron transport inhibitors and uncouplers on the oxidation of ferrous iron and compounds interacting with ferric iron in Acidithiobacillus ferrooxidans. Chen Y; Suzuki I Can J Microbiol; 2005 Aug; 51(8):695-703. PubMed ID: 16234867 [TBL] [Abstract][Full Text] [Related]
39. Growth kinetics and cellulase biosynthesis in the continuous culture of Trichoderma viride. Brown DE; Zainudeen MA Biotechnol Bioeng; 1977 Jul; 19(7):941-58. PubMed ID: 18233 [TBL] [Abstract][Full Text] [Related]
40. Kinetics of oxygen binding to ferrous myeloperoxidase. Jantschko W; Furtmüller PG; Zederbauer M; Jakopitsch C; Obinger C Arch Biochem Biophys; 2004 Jun; 426(1):91-7. PubMed ID: 15130787 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]