These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 9622523)
41. Phenol biodegradation by the thermoacidophilic archaeon Sulfolobus solfataricus 98/2 in a fed-batch bioreactor. Christen P; Davidson S; Combet-Blanc Y; Auria R Biodegradation; 2011 Jun; 22(3):475-84. PubMed ID: 20886261 [TBL] [Abstract][Full Text] [Related]
42. Increase in Fe3+/Fe2+ ratio and iron-induced oxidative stress in Eales disease and presence of ferrous iron in circulating transferrin. Selvi R; Angayarkanni N; Bharathselvi M; Sivaramakrishna R; Anisha T; Jyotirmoy B; Vasanthi B Curr Eye Res; 2007; 32(7-8):677-83. PubMed ID: 17852192 [TBL] [Abstract][Full Text] [Related]
43. Modeling threshold phenomena, metabolic pathways switches and signals in chemostat-cultivated cells: the Crabtree effect in Saccharomyces cerevisiae. Thierie J J Theor Biol; 2004 Feb; 226(4):483-501. PubMed ID: 14759654 [TBL] [Abstract][Full Text] [Related]
44. The effect of pH on the kinetics of spontaneous Fe(II) oxidation by O2 in aqueous solution--basic principles and a simple heuristic description. Morgan B; Lahav O Chemosphere; 2007 Aug; 68(11):2080-4. PubMed ID: 17368726 [TBL] [Abstract][Full Text] [Related]
45. Complexation of nicotinamide adenine dinucleotide with ferric and ferrous ions. Lvovich V; Scheeline A Arch Biochem Biophys; 1995 Jun; 320(1):1-13. PubMed ID: 7793967 [TBL] [Abstract][Full Text] [Related]
46. Effects of iron surface pretreatment on sorption and reduction kinetics of trichloroethylene in a closed batch system. Jung Lin C; Lo SL Water Res; 2005 Mar; 39(6):1037-46. PubMed ID: 15766958 [TBL] [Abstract][Full Text] [Related]
47. Transformation of vivianite by anaerobic nitrate-reducing iron-oxidizing bacteria. Miot J; Benzerara K; Morin G; Bernard S; Beyssac O; Larquet E; Kappler A; Guyot F Geobiology; 2009 Jun; 7(3):373-84. PubMed ID: 19573166 [TBL] [Abstract][Full Text] [Related]
48. Bacterial oxidation of ferrous iron at low temperatures. Kupka D; Rzhepishevska OI; Dopson M; Lindström EB; Karnachuk OV; Tuovinen OH Biotechnol Bioeng; 2007 Aug; 97(6):1470-8. PubMed ID: 17304566 [TBL] [Abstract][Full Text] [Related]
49. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
50. High-rate ferrous iron oxidation by immobilized Acidithiobacillus ferrooxidans with complex of PVA and sodium alginate. Yujian W; Xiaojuan Y; Wei T; Hongyu L J Microbiol Methods; 2007 Feb; 68(2):212-7. PubMed ID: 16979768 [TBL] [Abstract][Full Text] [Related]
51. Kinetics and stoichiometry of growth of plant cell cultures of Catharanthus roseus and Nicotiana tabacum in batch and continuous fermentors. van Gulik WM; Ten Hoopen HJ; Heijnen JJ Biotechnol Bioeng; 1992 Oct; 40(8):863-74. PubMed ID: 18601193 [TBL] [Abstract][Full Text] [Related]
52. Kinetic studies of lipid oxidation induced by hemoglobin measured by consumption of dissolved oxygen in a liposome model system. Carvajal AK; Rustad T; Mozuraityte R; Storrø I J Agric Food Chem; 2009 Sep; 57(17):7826-33. PubMed ID: 19691337 [TBL] [Abstract][Full Text] [Related]
53. Ferric and cupric reductase activities by iron-limited cells of the green alga Chlorella kessleri: quantification via oxygen electrode. Weger HG; Walker CN; Fink MB Physiol Plant; 2007 Oct; 131(2):322-31. PubMed ID: 18251903 [TBL] [Abstract][Full Text] [Related]
54. Carbon mass balance methodology to characterize the growth of pigmented marine bacteria under conditions of light cycling. Johnston W; Cooney M; Schorlemmer A; Pohl S; Karl DM; Bidigare R Bioprocess Biosyst Eng; 2005 May; 27(3):163-74. PubMed ID: 15668759 [TBL] [Abstract][Full Text] [Related]
55. Mineral and iron oxidation at low temperatures by pure and mixed cultures of acidophilic microorganisms. Dopson M; Halinen AK; Rahunen N; Ozkaya B; Sahinkaya E; Kaksonen AH; Lindström EB; Puhakka JA Biotechnol Bioeng; 2007 Aug; 97(5):1205-15. PubMed ID: 17187443 [TBL] [Abstract][Full Text] [Related]
56. Dissimilatory ferrous iron oxidation at a low pH: a novel trait identified in the bacterial subclass Rubrobacteridae. Bryan CG; Johnson DB FEMS Microbiol Lett; 2008 Nov; 288(2):149-55. PubMed ID: 18803673 [TBL] [Abstract][Full Text] [Related]
57. Total and stable washout of nitrite oxidizing bacteria from a nitrifying continuous activated sludge system using automatic control based on Oxygen Uptake Rate measurements. Jubany I; Lafuente J; Baeza JA; Carrera J Water Res; 2009 Jun; 43(11):2761-72. PubMed ID: 19371923 [TBL] [Abstract][Full Text] [Related]
58. Peroxynitrite-mediated oxidation of ferrous carbonylated myoglobin is limited by carbon monoxide dissociation. Ascenzi P; Ciaccio C; Coletta M Biochem Biophys Res Commun; 2007 Nov; 363(4):931-6. PubMed ID: 17910950 [TBL] [Abstract][Full Text] [Related]
59. Issues in the culture of the extremely thermophilic methanogen, Methanothermus fervidus. Pepper CB; Monbouquette HG Biotechnol Bioeng; 1993 Apr; 41(10):970-8. PubMed ID: 18601279 [TBL] [Abstract][Full Text] [Related]