These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 9622544)
1. Arylpiperazines with serotonin-3 antagonist activity: a comparative molecular field analysis. Morreale A; Gálvez-Ruano E; Iriepa-Canalda I; Boyd DB J Med Chem; 1998 Jun; 41(12):2029-39. PubMed ID: 9622544 [TBL] [Abstract][Full Text] [Related]
2. Novel potent and selective central 5-HT3 receptor ligands provided with different intrinsic efficacy. 2. Molecular basis of the intrinsic efficacy of arylpiperazine derivatives at the central 5-HT3 receptors. Cappelli A; Anzini M; Vomero S; Canullo L; Mennuni L; Makovec F; Doucet E; Hamon M; Menziani MC; De Benedetti PG; Bruni G; Romeo MR; Giorgi G; Donati A J Med Chem; 1999 May; 42(9):1556-75. PubMed ID: 10229626 [TBL] [Abstract][Full Text] [Related]
3. Mapping the binding site of a large set of quinazoline type EGF-R inhibitors using molecular field analyses and molecular docking studies. Hou T; Zhu L; Chen L; Xu X J Chem Inf Comput Sci; 2003; 43(1):273-87. PubMed ID: 12546563 [TBL] [Abstract][Full Text] [Related]
4. Binding of arylpiperazines, (aryloxy)propanolamines, and tetrahydropyridylindoles to the 5-HT1A receptor: contribution of the molecular lipophilicity potential to three-dimensional quantitative structure-affinity relationship models. Gaillard P; Carrupt PA; Testa B; Schambel P J Med Chem; 1996 Jan; 39(1):126-34. PubMed ID: 8568799 [TBL] [Abstract][Full Text] [Related]
5. CoMFA and CoMSIA 3D QSAR analysis on N1-arylsulfonylindole compounds as 5-HT6 antagonists. Doddareddy MR; Cho YS; Koh HY; Pae AN Bioorg Med Chem; 2004 Aug; 12(15):3977-85. PubMed ID: 15246074 [TBL] [Abstract][Full Text] [Related]
6. Structure-activity relationships for the binding of arylpiperazines and arylbiguanides at 5-HT3 serotonin receptors. Dukat M; Abdel-Rahman AA; Ismaiel AM; Ingher S; Teitler M; Gyermek L; Glennon RA J Med Chem; 1996 Sep; 39(20):4017-26. PubMed ID: 8831767 [TBL] [Abstract][Full Text] [Related]
7. Structure-based 3D-QSAR studies on heteroarylpiperazine derivatives as 5-HT3 receptor antagonists. Zhou YJ; Zhu LP; Tang Y; Ye DY Eur J Med Chem; 2007 Jul; 42(7):977-84. PubMed ID: 17331624 [TBL] [Abstract][Full Text] [Related]
8. A comparative molecular field analysis (CoMFA) study using semiempirical, density functional, ab initio methods and pharmacophore derivation using DISCOtech on sigma 1 ligands. Jung D; Floyd J; Gund TM J Comput Chem; 2004 Aug; 25(11):1385-99. PubMed ID: 15185333 [TBL] [Abstract][Full Text] [Related]
10. 3D-QSAR comparative molecular field analysis on delta opioid receptor agonist SNC80 and its analogs. Peng Y; Keenan SM; Zhang Q; Welsh WJ J Mol Graph Model; 2005 Sep; 24(1):25-33. PubMed ID: 15950508 [TBL] [Abstract][Full Text] [Related]
11. Modification of the structure of 4, 6-disubstituted 2-(4-alkyl-1-piperazinyl)pyridines: synthesis and their 5-HT2A receptor activity. Paluchowska MH; Bojarski AJ; Bugno R; Charakchieva-Minol S; Wesołowska A Arch Pharm (Weinheim); 2003 Apr; 336(2):104-10. PubMed ID: 12761763 [TBL] [Abstract][Full Text] [Related]
12. Comparative molecular field analysis of a series of paclitaxel analogues. Zhu Q; Guo Z; Huang N; Wang M; Chu F J Med Chem; 1997 Dec; 40(26):4319-28. PubMed ID: 9435901 [TBL] [Abstract][Full Text] [Related]
13. CoMFA-based prediction of agonist affinities at recombinant D1 vs D2 dopamine receptors. Wilcox RE; Tseng T; Brusniak MY; Ginsburg B; Pearlman RS; Teeter M; DuRand C; Starr S; Neve KA J Med Chem; 1998 Oct; 41(22):4385-99. PubMed ID: 9784114 [TBL] [Abstract][Full Text] [Related]
14. Melatonin receptor ligands: synthesis of new melatonin derivatives and comprehensive comparative molecular field analysis (CoMFA) study. Mor M; Rivara S; Silva C; Bordi F; Plazzi PV; Spadoni G; Diamantini G; Balsamini C; Tarzia G; Fraschini F; Lucini V; Nonno R; Stankov BM J Med Chem; 1998 Sep; 41(20):3831-44. PubMed ID: 9748358 [TBL] [Abstract][Full Text] [Related]
15. New 4-[omega-(diarylmethylamino)alkyl]- and 4-[omega-(diarylmethoxy)alkyl]-1-arylpiperazines as selective 5-HT1A/5-HT2A receptor ligands with differentiated in vivo activity. Paluchowska MH; Charakchieva-Minol S; Tatarczyńska E; Kłodzińska A; Stachowicz K; Chojnacka-Wójcik E Pol J Pharmacol; 2004; 56(6):743-54. PubMed ID: 15662087 [TBL] [Abstract][Full Text] [Related]
16. Synthesis, 5-HT1A and 5-HT2A receptor activity of new 1-phenylpiperazinylpropyl derivatives with arylalkyl substituents in position 7 of purine-2,6-dione. Chloń G; Pawłowski M; Duszyńska B; Szaro A; Tatarczńska E; Kłodzińska AL; Chojnacka-Wójcik E Pol J Pharmacol; 2001; 53(4):359-68. PubMed ID: 11990082 [TBL] [Abstract][Full Text] [Related]
17. Application of validated QSAR models of D1 dopaminergic antagonists for database mining. Oloff S; Mailman RB; Tropsha A J Med Chem; 2005 Nov; 48(23):7322-32. PubMed ID: 16279792 [TBL] [Abstract][Full Text] [Related]
18. Effect of linking bridge modifications on the 5-HT1A receptor activity of some 4-(omega-benzotriazol-1-yl)alkyl-1-(2-methoxy-phenyl)piperazines. Paluchowska MH; Kłodzińska A; Tatarczyńska E; Szaro A; Chojnacka-Wójcik E Pol J Pharmacol; 1998; 50(4-5):341-7. PubMed ID: 10091719 [TBL] [Abstract][Full Text] [Related]
19. Comparative molecular field analysis of hydantoin binding to the neuronal voltage-dependent sodium channel. Brown ML; Zha CC; Van Dyke CC; Brown GB; Brouillette WJ J Med Chem; 1999 May; 42(9):1537-45. PubMed ID: 10229624 [TBL] [Abstract][Full Text] [Related]
20. Homology modeling of the serotonin 5-HT1A receptor using automated docking of bioactive compounds with defined geometry. Nowak M; Kołaczkowski M; Pawłowski M; Bojarski AJ J Med Chem; 2006 Jan; 49(1):205-14. PubMed ID: 16392805 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]