These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 9622643)
1. Active transport properties of porcine choroid plexus cells in culture. Hakvoort A; Haselbach M; Galla HJ Brain Res; 1998 Jun; 795(1-2):247-56. PubMed ID: 9622643 [TBL] [Abstract][Full Text] [Related]
2. Porcine Choroid plexus epithelial cells in culture: regulation of barrier properties and transport processes. Haselbach M; Wegener J; Decker S; Engelbertz C; Galla HJ Microsc Res Tech; 2001 Jan; 52(1):137-52. PubMed ID: 11135456 [TBL] [Abstract][Full Text] [Related]
3. The polarity of choroid plexus epithelial cells in vitro is improved in serum-free medium. Hakvoort A; Haselbach M; Wegener J; Hoheisel D; Galla HJ J Neurochem; 1998 Sep; 71(3):1141-50. PubMed ID: 9721739 [TBL] [Abstract][Full Text] [Related]
4. Usefulness and limitation of primary cultured porcine choroid plexus epithelial cells as an in vitro model to study drug transport at the blood-CSF barrier. Angelow S; Zeni P; Galla HJ Adv Drug Deliv Rev; 2004 Oct; 56(12):1859-73. PubMed ID: 15381337 [TBL] [Abstract][Full Text] [Related]
5. Characterization of the amino acid transport of new immortalized choroid plexus epithelial cell lines: a novel in vitro system for investigating transport functions at the blood-cerebrospinal fluid barrier. Kitazawa T; Hosoya K; Watanabe M; Takashima T; Ohtsuki S; Takanaga H; Ueda M; Yanai N; Obinata M; Terasaki T Pharm Res; 2001 Jan; 18(1):16-22. PubMed ID: 11336348 [TBL] [Abstract][Full Text] [Related]
6. Characterization of the transport properties of a quinolone antibiotic, fleroxacin, in rat choroid plexus. Ooie T; Suzuki H; Terasaki T; Sugiyama Y Pharm Res; 1996 Apr; 13(4):523-7. PubMed ID: 8710740 [TBL] [Abstract][Full Text] [Related]
7. Functional characterisation of the active ascorbic acid transport into cerebrospinal fluid using primary cultured choroid plexus cells. Angelow S; Haselbach M; Galla HJ Brain Res; 2003 Oct; 988(1-2):105-13. PubMed ID: 14519531 [TBL] [Abstract][Full Text] [Related]
8. Riboflavin transport in the central nervous system. Characterization and effects of drugs. Spector R J Clin Invest; 1980 Oct; 66(4):821-31. PubMed ID: 7419721 [TBL] [Abstract][Full Text] [Related]
9. Role of PEPT2 in peptide/mimetic trafficking at the blood-cerebrospinal fluid barrier: studies in rat choroid plexus epithelial cells in primary culture. Shu C; Shen H; Teuscher NS; Lorenzi PJ; Keep RF; Smith DE J Pharmacol Exp Ther; 2002 Jun; 301(3):820-9. PubMed ID: 12023509 [TBL] [Abstract][Full Text] [Related]
10. Demonstration of a coupled metabolism-efflux process at the choroid plexus as a mechanism of brain protection toward xenobiotics. Strazielle N; Ghersi-Egea JF J Neurosci; 1999 Aug; 19(15):6275-89. PubMed ID: 10414957 [TBL] [Abstract][Full Text] [Related]
11. Porcine choroid plexus cells in culture: expression of polarized phenotype, maintenance of barrier properties and apical secretion of CSF-components. Gath U; Hakvoort A; Wegener J; Decker S; Galla HJ Eur J Cell Biol; 1997 Sep; 74(1):68-78. PubMed ID: 9309392 [TBL] [Abstract][Full Text] [Related]
12. Micronutrient and urate transport in choroid plexus and kidney: implications for drug therapy. Spector R; Johanson C Pharm Res; 2006 Nov; 23(11):2515-24. PubMed ID: 17048121 [TBL] [Abstract][Full Text] [Related]
13. PEPT2 (Slc15a2)-mediated unidirectional transport of cefadroxil from cerebrospinal fluid into choroid plexus. Shen H; Keep RF; Hu Y; Smith DE J Pharmacol Exp Ther; 2005 Dec; 315(3):1101-8. PubMed ID: 16107517 [TBL] [Abstract][Full Text] [Related]
15. Myo-inositol transport in the central nervous system. Spector R; Lorenzo AV Am J Physiol; 1975 May; 228(5):1510-18. PubMed ID: 1130554 [TBL] [Abstract][Full Text] [Related]
17. Maturational differences in acetazolamide-altered pH and HCO3 of choroid plexus, cerebrospinal fluid, and brain. Johanson CE; Parandoosh Z; Dyas ML Am J Physiol; 1992 May; 262(5 Pt 2):R909-14. PubMed ID: 1590485 [TBL] [Abstract][Full Text] [Related]
18. Glutaric aciduria type I and methylmalonic aciduria: simulation of cerebral import and export of accumulating neurotoxic dicarboxylic acids in in vitro models of the blood-brain barrier and the choroid plexus. Sauer SW; Opp S; Mahringer A; Kamiński MM; Thiel C; Okun JG; Fricker G; Morath MA; Kölker S Biochim Biophys Acta; 2010 Jun; 1802(6):552-60. PubMed ID: 20302929 [TBL] [Abstract][Full Text] [Related]
19. Organic anion transport in choroid plexus from wild-type and organic anion transporter 3 (Slc22a8)-null mice. Sykes D; Sweet DH; Lowes S; Nigam SK; Pritchard JB; Miller DS Am J Physiol Renal Physiol; 2004 May; 286(5):F972-8. PubMed ID: 15075193 [TBL] [Abstract][Full Text] [Related]
20. Role of cationic drug-sensitive transport systems at the blood-cerebrospinal fluid barrier in para-tyramine elimination from rat brain. Akanuma SI; Yamazaki Y; Kubo Y; Hosoya KI Fluids Barriers CNS; 2018 Jan; 15(1):1. PubMed ID: 29307307 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]