These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 9622657)

  • 1. Muscarinic elicitation of EEG asymmetry in freely moving rats.
    Vorobyov VV; Ahmetova ER
    Brain Res; 1998 Jun; 794(2):299-303. PubMed ID: 9622657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repeated exposure to low-level extremely low frequency-modulated microwaves affects baseline and scopolamine-modified electroencephalograms in freely moving rats.
    Vorobyov V; Pesić V; Janać B; Prolić Z
    Int J Radiat Biol; 2004 Sep; 80(9):691-8. PubMed ID: 15586889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term changes in hippocampus and neocortex EEG spectra in response to pharmacological treatments affecting the cholinergic system.
    Podol'skii IY; Vorob'ev VV; Belova NA
    Neurosci Behav Physiol; 2001; 31(6):589-95. PubMed ID: 11766895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EEG dissociation induced by muscarinic receptor antagonists: Coherent 40 Hz oscillations in a background of slow waves and spindles.
    Castro-Zaballa S; Cavelli M; González J; Monti J; Falconi A; Torterolo P
    Behav Brain Res; 2019 Feb; 359():28-37. PubMed ID: 30321557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of weak microwave fields amplitude modulated at ELF on EEG of symmetric brain areas in rats.
    Vorobyov VV; Galchenko AA; Kukushkin NI; Akoev IG
    Bioelectromagnetics; 1997; 18(4):293-8. PubMed ID: 9140659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Long-term changes in EEG spectra of the hippocampus and neocortex during pharmacological action on the cholinergic system].
    Podol'skiĭ IIa; Vorob'ev VV; Belova NA
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2000; 50(6):982-90. PubMed ID: 11190098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The effect of scopolamine on the spatial organization of rat cortical potentials].
    Koshtoiants OKh; Korol'kova TA; Kozhechkin SN; Kozhedub RG; Sviderskaia NE; Petukhova EG; Balashova AN
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1999; 49(6):1052-6. PubMed ID: 10693286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electroencephalographic characterization of scopolamine-induced convulsions in fasted mice after food intake.
    Nurten A; Ozen I; Karamursel S; Kara I
    Seizure; 2006 Oct; 15(7):509-19. PubMed ID: 16890459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cortical EEG oscillations and network connectivity as efficacy indices for assessing drugs with cognition enhancing potential.
    Ahnaou A; Huysmans H; Jacobs T; Drinkenburg WH
    Neuropharmacology; 2014 Nov; 86():362-77. PubMed ID: 25181033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pharmacological modulation of cholinergic brain activity and its reflection in special EEG frequency ranges from various brain areas in the freely moving rat (Tele-Stereo-EEG).
    Dimpfel W
    Eur Neuropsychopharmacol; 2005 Dec; 15(6):673-82. PubMed ID: 16009538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of cerebral blood flow response to somatosensory stimulation through the cholinergic system: a positron emission tomography study in unanesthetized monkeys.
    Tsukada H; Kakiuchi T; Ando I; Shizuno H; Nakanishi S; Ouchi Y
    Brain Res; 1997 Feb; 749(1):10-7. PubMed ID: 9070622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of EEG rhythmicity and spike activity in the rat hippocampus by systemically administered tetrahydroaminoacridine, scopolamine and atipamezole.
    Valjakka A; Lukkarinen K; Koivisto E; Riekkinen P; Miettinen R; Airaksinen MM; Lammintausta R; Riekkinen P
    Brain Res Bull; 1991 May; 26(5):739-45. PubMed ID: 1682015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of scopolamine on MEG spectral power and coherence in elderly subjects.
    Osipova D; Ahveninen J; Kaakkola S; Jääskeläinen IP; Huttunen J; Pekkonen E
    Clin Neurophysiol; 2003 Oct; 114(10):1902-7. PubMed ID: 14499752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanism responsible for the drowsiness caused by first generation H1 antagonists on the EEG pattern.
    Kaneko Y; Shimada K; Saitou K; Sugimoto Y; Kamei C
    Methods Find Exp Clin Pharmacol; 2000 Apr; 22(3):163-8. PubMed ID: 10893699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacokinetic-pharmacodynamic modeling of the electroencephalogram effects of scopolamine in healthy volunteers.
    Ebert U; Grossmann M; Oertel R; Gramatté T; Kirch W
    J Clin Pharmacol; 2001 Jan; 41(1):51-60. PubMed ID: 11144994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repeated exposure to low-level extremely low frequency-modulated microwaves affects cortex-hypothalamus interplay in freely moving rats: EEG study.
    Vorobyov V; Janać B; Pesić V; Prolić Z
    Int J Radiat Biol; 2010 May; 86(5):376-83. PubMed ID: 20397842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in EEG power spectra and behavioral states in rats exposed to the acetylcholinesterase inhibitor chlorpyrifos and muscarinic agonist oxotremorine.
    Timofeeva OA; Gordon CJ
    Brain Res; 2001 Mar; 893(1-2):165-77. PubMed ID: 11223004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cholinergic modulation of slow cortical rhythm in urethane-anesthetized rats.
    Toth A; Hajnik T; Detari L
    Brain Res Bull; 2012 Jan; 87(1):117-29. PubMed ID: 22033501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of scopolamine on the spatial organization of cortical potentials in the rat brain.
    Koshtoyants OKh ; Korol'kova TA; Kozhechkin SN; Kozhedub RG; Sviderskaya NE; Petukhova EG; Balashova AN
    Neurosci Behav Physiol; 2001; 31(1):61-3. PubMed ID: 11265815
    [No Abstract]   [Full Text] [Related]  

  • 20. [The participation of the 5-HT1 and 5-HT2 subtypes of the serotonin receptors in the formation of the frequency component in the EEG of non-narcotized rats].
    Vorob'ev VV; Akhmetova ER; Kovalev GI
    Eksp Klin Farmakol; 1999; 62(1):15-8. PubMed ID: 10198758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.