These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 9623494)

  • 1. Postnatal development and differentiation of myofibres in functionally diverse porcine skeletal muscles.
    Harrison AP; Latorre R; Dauncey MJ
    Reprod Fertil Dev; 1997; 9(7):731-40. PubMed ID: 9623494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postnatal regulation of myosin heavy chain isoform expression and metabolic enzyme activity by nutrition.
    White P; Cattaneo D; Dauncey MJ
    Br J Nutr; 2000 Aug; 84(2):185-94. PubMed ID: 11029969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fibre type differentiation during postnatal development of miniature pig skeletal muscles.
    Horák V
    Reprod Nutr Dev; 1995; 35(6):725-36. PubMed ID: 8534366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of thyroid hormones in early postnatal development of skeletal muscle and its implications for undernutrition.
    Harrison AP; Tivey DR; Clausen T; Duchamp C; Dauncey MJ
    Br J Nutr; 1996 Dec; 76(6):841-55. PubMed ID: 9014653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscle growth and fiber type composition in hind limb muscles during postnatal development in pigs.
    Wank V; Fischer MS; Walter B; Bauer R
    Cells Tissues Organs; 2006; 182(3-4):171-81. PubMed ID: 16914919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differentiation of rat skeletal muscle fibres during development and ageing.
    Punkt K; Naupert A; Asmussen G
    Acta Histochem; 2004; 106(2):145-54. PubMed ID: 15147636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of early postnatal cold exposure on myofiber maturation in pig skeletal muscle.
    Lefaucheur L; Ecolan P; Lossec G; Gabillard JC; Butler-Browne GS; Herpin P
    J Muscle Res Cell Motil; 2001; 22(5):439-52. PubMed ID: 11964069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzyme activity patterns of myosin ATPase, alpha-glycerophosphate dehydrogenase and succinate dehydrogenase within different muscle fibre types.
    Wank V; Bauer R; Punkt K; Ziegan J
    Acta Histochem; 1994 Jun; 96(2):213-8. PubMed ID: 7976131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth hormone receptor gene expression in porcine skeletal and cardiac muscles is selectively regulated by postnatal undernutrition.
    Katsumata M; Cattaneo D; White P; Burton KA; Dauncey MJ
    J Nutr; 2000 Oct; 130(10):2482-8. PubMed ID: 11015477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differentiation of original and regenerated skeletal muscle fibres in mdx dystrophic muscles.
    Earnshaw JC; Kyprianou P; Krishan K; Dhoot GK
    Histochem Cell Biol; 2002 Jul; 118(1):19-27. PubMed ID: 12122443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myosin heavy chain isoform transitions in canine skeletal muscles during postnatal growth.
    Strbenc M; Smerdu V; Pogacnik A; Fazarinc G
    J Anat; 2006 Aug; 209(2):149-63. PubMed ID: 16879596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postnatal emergence of mature release properties in terminals of rat fast- and slow-twitch muscles.
    Bewick GS; Reid B; Jawaid S; Hatcher T; Shanley L
    Eur J Neurosci; 2004 Jun; 19(11):2967-76. PubMed ID: 15182303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of sex on muscular development of Muscovy ducks.
    Baéza E; Marché G; Wacrenier N
    Reprod Nutr Dev; 1999; 39(5-6):675-82. PubMed ID: 10619174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fibre type grouping in porcine masseter and soleus muscles assessed by the enclosed fibre type concept. A statistical and computational analysis.
    Ström D; Holm S
    J Oral Rehabil; 1997 May; 24(5):389-400. PubMed ID: 9183034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in contractile activation characteristics of rat fast and slow skeletal muscle fibres during regeneration.
    Gregorevic P; Plant DR; Stupka N; Lynch GS
    J Physiol; 2004 Jul; 558(Pt 2):549-60. PubMed ID: 15181161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential expression of myosin heavy chain mRNA and protein isoforms in four functionally diverse rabbit skeletal muscles during pre- and postnatal development.
    McKoy G; Léger ME; Bacou F; Goldspink G
    Dev Dyn; 1998 Mar; 211(3):193-203. PubMed ID: 9520107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slow-tonic muscle fibers and their potential innervation in the turtle, Pseudemys (Trachemys) scripta elegans.
    Callister RJ; Pierce PA; McDonagh JC; Stuart DG
    J Morphol; 2005 Apr; 264(1):62-74. PubMed ID: 15732049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slow or fast: Implications of myofibre type and associated differences for manifestation of neuromuscular disorders.
    Lloyd EM; Pinniger GJ; Murphy RM; Grounds MD
    Acta Physiol (Oxf); 2023 Aug; 238(4):e14012. PubMed ID: 37306196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dietary supplementation with β-hydroxy-β-methylbutyrate calcium during the early postnatal period accelerates skeletal muscle fibre growth and maturity in intra-uterine growth-retarded and normal-birth-weight piglets.
    Wan H; Zhu J; Su G; Liu Y; Hua L; Hu L; Wu C; Zhang R; Zhou P; Shen Y; Lin Y; Xu S; Fang Z; Che L; Feng B; Wu D
    Br J Nutr; 2016 Apr; 115(8):1360-9. PubMed ID: 26917333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The response of adult and developing rat plantaris muscle to overload.
    Frischknecht R; Belverstone D; Vrbová G
    Pflugers Arch; 1995 Dec; 431(2):204-11. PubMed ID: 9026780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.