These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 9624149)
1. Mapping the serpin-proteinase complex using single cysteine variants of alpha1-proteinase inhibitor Pittsburgh. Stratikos E; Gettins PG J Biol Chem; 1998 Jun; 273(25):15582-9. PubMed ID: 9624149 [TBL] [Abstract][Full Text] [Related]
2. Insight into the mechanism of serpin-proteinase inhibition from 2D [1H-15N] NMR studies of the 69 kDa alpha 1-proteinase inhibitor Pittsburgh-trypsin covalent complex. Peterson FC; Gettins PG Biochemistry; 2001 May; 40(21):6284-92. PubMed ID: 11371190 [TBL] [Abstract][Full Text] [Related]
3. Formation of the covalent serpin-proteinase complex involves translocation of the proteinase by more than 70 A and full insertion of the reactive center loop into beta-sheet A. Stratikos E; Gettins PG Proc Natl Acad Sci U S A; 1999 Apr; 96(9):4808-13. PubMed ID: 10220375 [TBL] [Abstract][Full Text] [Related]
4. alpha1-Proteinase inhibitor forms initial non-covalent and final covalent complexes with elastase analogously to other serpin-proteinase pairs, suggesting a common mechanism of inhibition. Dobó J; Gettins PG J Biol Chem; 2004 Mar; 279(10):9264-9. PubMed ID: 14593107 [TBL] [Abstract][Full Text] [Related]
5. Structure of a serpin-enzyme complex probed by cysteine substitutions and fluorescence spectroscopy. Ludeman JP; Whisstock JC; Hopkins PC; Le Bonniec BF; Bottomley SP Biophys J; 2001 Jan; 80(1):491-7. PubMed ID: 11159419 [TBL] [Abstract][Full Text] [Related]
6. Formation of a noncovalent serpin-proteinase complex involves no conformational change in the serpin. Use of 1H-15N HSQC NMR as a sensitive nonperturbing monitor of conformation. Peterson FC; Gordon NC; Gettins PG Biochemistry; 2000 Oct; 39(39):11884-92. PubMed ID: 11009600 [TBL] [Abstract][Full Text] [Related]
7. Major proteinase movement upon stable serpin-proteinase complex formation. Stratikos E; Gettins PG Proc Natl Acad Sci U S A; 1997 Jan; 94(2):453-8. PubMed ID: 9012804 [TBL] [Abstract][Full Text] [Related]
8. Change in environment of the P1 side chain upon progression from the Michaelis complex to the covalent serpin-proteinase complex. Futamura A; Stratikos E; Olson ST; Gettins PG Biochemistry; 1998 Sep; 37(38):13110-9. PubMed ID: 9748317 [TBL] [Abstract][Full Text] [Related]
9. Serine and cysteine proteases are translocated to similar extents upon formation of covalent complexes with serpins. Fluorescence perturbation and fluorescence resonance energy transfer mapping of the protease binding site in CrmA complexes with granzyme B and caspase-1. Swanson R; Raghavendra MP; Zhang W; Froelich C; Gettins PG; Olson ST J Biol Chem; 2007 Jan; 282(4):2305-13. PubMed ID: 17142451 [TBL] [Abstract][Full Text] [Related]
10. Analysis of the plasma elimination kinetics and conformational stabilities of native, proteinase-complexed, and reactive site cleaved serpins: comparison of alpha 1-proteinase inhibitor, alpha 1-antichymotrypsin, antithrombin III, alpha 2-antiplasmin, angiotensinogen, and ovalbumin. Mast AE; Enghild JJ; Pizzo SV; Salvesen G Biochemistry; 1991 Feb; 30(6):1723-30. PubMed ID: 1704258 [TBL] [Abstract][Full Text] [Related]
12. Use of fluorescence resonance energy transfer to study serpin-proteinase interactions. Gettins PG; Olson ST Methods; 2004 Feb; 32(2):110-9. PubMed ID: 14698623 [TBL] [Abstract][Full Text] [Related]
14. Influence of the P5 residue on alpha1-proteinase inhibitor mechanism. Chaillan-Huntington CE; Patston PA J Biol Chem; 1998 Feb; 273(8):4569-73. PubMed ID: 9468513 [TBL] [Abstract][Full Text] [Related]
15. The pH dependence of serpin-proteinase complex dissociation reveals a mechanism of complex stabilization involving inactive and active conformational states of the proteinase which are perturbable by calcium. Calugaru SV; Swanson R; Olson ST J Biol Chem; 2001 Aug; 276(35):32446-55. PubMed ID: 11404362 [TBL] [Abstract][Full Text] [Related]
16. Intrinsic fluorescence changes and rapid kinetics of proteinase deformation during serpin inhibition. Tew DJ; Bottomley SP FEBS Lett; 2001 Apr; 494(1-2):30-3. PubMed ID: 11297729 [TBL] [Abstract][Full Text] [Related]
17. Role of the catalytic serine in the interactions of serine proteinases with protein inhibitors of the serpin family. Contribution of a covalent interaction to the binding energy of serpin-proteinase complexes. Olson ST; Bock PE; Kvassman J; Shore JD; Lawrence DA; Ginsburg D; Björk I J Biol Chem; 1995 Dec; 270(50):30007-17. PubMed ID: 8530403 [TBL] [Abstract][Full Text] [Related]
18. Conformational distributions of protease-serpin complexes: a partially translocated complex. Liu L; Mushero N; Hedstrom L; Gershenson A Biochemistry; 2006 Sep; 45(36):10865-72. PubMed ID: 16953572 [TBL] [Abstract][Full Text] [Related]
19. Resolution of Michaelis complex, acylation, and conformational change steps in the reactions of the serpin, plasminogen activator inhibitor-1, with tissue plasminogen activator and trypsin. Olson ST; Swanson R; Day D; Verhamme I; Kvassman J; Shore JD Biochemistry; 2001 Oct; 40(39):11742-56. PubMed ID: 11570875 [TBL] [Abstract][Full Text] [Related]
20. Secondary structure changes stabilize the reactive-centre cleaved form of SERPINs. A study by 1H nuclear magnetic resonance and Fourier transform infrared spectroscopy. Perkins SJ; Smith KF; Nealis AS; Haris PI; Chapman D; Bauer CJ; Harrison RA J Mol Biol; 1992 Dec; 228(4):1235-54. PubMed ID: 1335516 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]