BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 9626560)

  • 1. Electronic spin resonance detection of superoxide and hydroxyl radicals during the reductive metabolism of drugs by rat brain preparations and isolated cerebral microvessels.
    Ghersi-Egea JF; Maupoil V; Ray D; Rochette L
    Free Radic Biol Med; 1998 May; 24(7-8):1074-81. PubMed ID: 9626560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased NADPH- and NADH-dependent production of superoxide and hydroxyl radical by microsomes after chronic ethanol treatment.
    Rashba-Step J; Turro NJ; Cederbaum AI
    Arch Biochem Biophys; 1993 Jan; 300(1):401-8. PubMed ID: 8380969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ESR studies on the production of reactive oxygen intermediates by rat liver microsomes in the presence of NADPH or NADH.
    Rashba-Step J; Turro NJ; Cederbaum AI
    Arch Biochem Biophys; 1993 Jan; 300(1):391-400. PubMed ID: 8380968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme mediated superoxide radical formation initiated by exogenous molecules in rat brain preparations.
    Ghersi-Egea JF; Livertoux MH; Minn A; Perrin R; Siest G
    Toxicol Appl Pharmacol; 1991 Aug; 110(1):107-17. PubMed ID: 1651570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of free radicals as a consequence of dog tracheal epithelial cellular xenobiotic metabolism.
    Rosen GM; Hassett DJ; Yankaskas JR; Cohen MS
    Xenobiotica; 1989 Jun; 19(6):635-43. PubMed ID: 2548351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of superoxide and hydroxyl radicals from 1-methyl-4-phenylpyridinium ion (MPP+): reductive activation by NADPH cytochrome P-450 reductase.
    Sinha BK; Singh Y; Krishna G
    Biochem Biophys Res Commun; 1986 Mar; 135(2):583-8. PubMed ID: 3008728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superoxide anion production during monoelectronic reduction of xenobiotics by preparations of rat brain cortex, microvessels, and choroid plexus.
    Lagrange P; Livertoux MH; Grassiot MC; Minn A
    Free Radic Biol Med; 1994 Oct; 17(4):355-9. PubMed ID: 8001839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The superoxide production mediated by the redox cycling of xenobiotics in rat brain microsomes is dependent on their reduction potential.
    Livertoux MH; Lagrange P; Minn A
    Brain Res; 1996 Jul; 725(2):207-16. PubMed ID: 8836527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of mitochondrial electron transport chain-mediated NADH radical formation by EPR spin-trapping techniques.
    Matsuzaki S; Kotake Y; Humphries KM
    Biochemistry; 2011 Dec; 50(50):10792-803. PubMed ID: 22091587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ferritin stimulation of hydroxyl radical production by rat liver nuclei.
    Kukiełka E; Cederbaum AI
    Arch Biochem Biophys; 1994 Jan; 308(1):70-7. PubMed ID: 8311476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparative study of the redox-cycling of a quinone (rifamycin S) and a quinonimine (rifabutin) antibiotic by rat liver microsomes.
    Rao DN; Cederbaum AI
    Free Radic Biol Med; 1997; 22(3):439-46. PubMed ID: 8981035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An electron spin resonance study of oxyradical generation in superoxide dismutase- and catalase-deficient mutants of Escherichia coli K-12.
    Schellhorn HE; Pou S; Moody C; Hassan HM
    Arch Biochem Biophys; 1989 Jun; 271(2):323-31. PubMed ID: 2543292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microsomal interactions between iron, paraquat, and menadione: effect on hydroxyl radical production and alcohol oxidation.
    Beloqui O; Cederbaum AI
    Arch Biochem Biophys; 1985 Oct; 242(1):187-96. PubMed ID: 2996429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NADPH- and NADH-dependent oxygen radical generation by rat liver nuclei in the presence of redox cycling agents and iron.
    Kukiełka E; Cederbaum AI
    Arch Biochem Biophys; 1990 Dec; 283(2):326-33. PubMed ID: 2275546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydroxyl radical generation in the NADH/microsomal reduction of vanadate.
    Shi X; Dalal NS
    Free Radic Res Commun; 1992; 17(6):369-76. PubMed ID: 1337535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical.
    Doroshow JH; Davies KJ
    J Biol Chem; 1986 Mar; 261(7):3068-74. PubMed ID: 3005279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydroxyl radical formation as a result of the interaction between primaquine and reduced pyridine nucleotides. Catalysis by hemoglobin and microsomes.
    Augusto O; Weingrill CL; Schreier S; Amemiya H
    Arch Biochem Biophys; 1986 Jan; 244(1):147-55. PubMed ID: 3004336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygen radical formation in well-washed rat liver microsomes: spin trapping studies.
    Reinke LA; Bailey SM; Rau JM; McCay PB
    Free Radic Res; 1994 Jan; 20(1):51-60. PubMed ID: 8012521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NADH-dependent generation of reactive oxygen species by microsomes in the presence of iron and redox cycling agents.
    Dicker E; Cederbaum AI
    Biochem Pharmacol; 1991 Jul; 42(3):529-35. PubMed ID: 1650215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ca2+ and Mg2+-enhanced reduction of arsenazo III to its anion free radical metabolite and generation of superoxide anion by an outer mitochondrial membrane azoreductase.
    Moreno SN; Mason RP; Docampo R
    J Biol Chem; 1984 Dec; 259(23):14609-16. PubMed ID: 6094566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.