BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 9626647)

  • 1. The effects of steroids on vestibular compensation and vestibular nucleus neuronal activity in the guinea pig.
    Alice C; Paul AE; Sansom AJ; Maclennan K; Darlington CL; Smith PF
    J Vestib Res; 1998; 8(3):201-7. PubMed ID: 9626647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early diazepam treatment following unilateral labyrinthectomy does not impair vestibular compensation of spontaneous nystagmus in guinea pig.
    Martin J; Gilchrist DP; Smith PF; Darlington CL
    J Vestib Res; 1996; 6(2):135-9. PubMed ID: 8925116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modification of the pacemaker activity of vestibular neurons in brainstem slices during vestibular compensation in the guinea pig.
    Ris L; Capron B; Vibert N; Vidal PP; Godaux E
    Eur J Neurosci; 2001 Jun; 13(12):2234-40. PubMed ID: 11454026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunocytochemical and stereological study of glucocorticoid receptors in rat medial vestibular nucleus neurons and the effects of unilateral vestibular deafferentation.
    Zhang R; Smith PF; Darlington CL
    Acta Otolaryngol; 2005 Dec; 125(12):1258-64. PubMed ID: 16303671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of baclofen on neuronal activity in the medial vestibular nucleus after unilateral surgical labyrinthectomy in rats.
    Yu D; Yin S; Chen Z
    Acta Otolaryngol; 2009 Jul; 129(7):735-40. PubMed ID: 18728918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lesion-induced plasticity in rat vestibular nucleus neurones dependent on glucocorticoid receptor activation.
    Cameron SA; Dutia MB
    J Physiol; 1999 Jul; 518(Pt 1):151-8. PubMed ID: 10373697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The opioid receptor antagonist, naloxone, enhances ocular motor compensation in guinea pig following peripheral vestibular deafferentation.
    Dutia MB; Gilchrist DP; Sansom AJ; Smith PF; Darlington CL
    Exp Neurol; 1996 Sep; 141(1):141-4. PubMed ID: 8797676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid vestibular compensation in guinea pig even with prolonged anesthesia.
    Gliddon CM; Darlington CL; Smith PF
    Neurosci Lett; 2004 Nov; 371(2-3):138-41. PubMed ID: 15519744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term plasticity of ipsilesional medial vestibular nucleus neurons after unilateral labyrinthectomy.
    Beraneck M; Hachemaoui M; Idoux E; Ris L; Uno A; Godaux E; Vidal PP; Moore LE; Vibert N
    J Neurophysiol; 2003 Jul; 90(1):184-203. PubMed ID: 12649317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of protein kinase activity and protein phosphorylation in the medial vestibular nucleus and prepositus hypoglossi in labyrinthine-intact and labyrinthectomized guinea pigs.
    Kerr DR; Sansom AJ; Smith PF; Darlington CL
    J Vestib Res; 2000; 10(2):107-17. PubMed ID: 10939686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for the involvement of NMDA receptors in vestibular compensation.
    Aoki M; Miyata H; Mizuta K; Ito Y
    J Vestib Res; 1996; 6(4):315-7. PubMed ID: 8839826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plastic changes underlying vestibular compensation in the guinea-pig persist in isolated, in vitro whole brain preparations.
    Vibert N; Babalian A; Serafin M; Gasc JP; Mühlethaler M; Vidal PP
    Neuroscience; 1999; 93(2):413-32. PubMed ID: 10465424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the effects of ACTH-(4-10) on medial vestibular nucleus neurons in brainstem slices from labyrinthine-intact and compensated guinea pigs.
    Darlington CL; Smith PF; Gilchrist DP
    Neurosci Lett; 1992 Sep; 145(1):97-9. PubMed ID: 1334243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fos-enkephalin signaling in the rat medial vestibular nucleus facilitates vestibular compensation.
    Kitahara T; Kaneko T; Horii A; Fukushima M; Kizawa-Okumura K; Takeda N; Kubo T
    J Neurosci Res; 2006 Jun; 83(8):1573-83. PubMed ID: 16547969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence against a role of gap junctions in vestibular compensation.
    Beraneck M; Uno A; Vassias I; Idoux E; De Waele C; Vidal PP; Vibert N
    Neurosci Lett; 2009 Jan; 450(2):97-101. PubMed ID: 19084577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuronal activity in the guinea pig medial vestibular nucleus in vitro following chronic unilateral labyrinthectomy.
    Darlington CL; Smith PF; Hubbard JI
    Neurosci Lett; 1989 Oct; 105(1-2):143-8. PubMed ID: 2485877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuronal activity in the ipsilateral medial vestibular nucleus of the guinea pig following unilateral labyrinthectomy.
    Smith PF; Curthoys IS
    Brain Res; 1988 Mar; 444(2):308-19. PubMed ID: 3359298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of glucocorticoid in vestibular compensation in relation to activation of vestibular nucleus neurons.
    Yamanaka T; Sasa M; Amano T; Miyahara H; Matsunaga T
    Acta Otolaryngol Suppl; 1995; 519():168-72. PubMed ID: 7610857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Static and dynamic membrane properties of lateral vestibular nucleus neurons in guinea pig brain stem slices.
    Uno A; Idoux E; Beraneck M; Vidal PP; Moore LE; Wilson VJ; Vibert N
    J Neurophysiol; 2003 Sep; 90(3):1689-703. PubMed ID: 12761276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of L-NAME on vestibular compensation and NOS activity in the vestibular nucleus, cerebellum and cortex of the guinea pig.
    Paterson S; Zheng Y; Smith PF; Darlington CL
    Brain Res; 2000 Oct; 879(1-2):148-55. PubMed ID: 11011016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.