BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 9626757)

  • 1. Molecular alterations of canalicular transport systems in experimental models of cholestasis: possible functional correlations.
    Trauner M
    Yale J Biol Med; 1997; 70(4):365-78. PubMed ID: 9626757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [New molecular aspects of cholestatic liver diseases].
    Trauner M; Fickert P; Stauber RE
    Z Gastroenterol; 1999 Jul; 37(7):639-47. PubMed ID: 10458013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [New molecular features of cholestatic diseases of the liver].
    Méndez-Sánchez N; Chavez-Tapia NC; Uribe M
    Rev Invest Clin; 2003; 55(5):546-56. PubMed ID: 14968476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cholestasis: the ABCs of cellular mechanisms for impaired bile secretion--transporters and genes.
    Shaffer EA
    Can J Gastroenterol; 2002 Jun; 16(6):380-9. PubMed ID: 12096302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biliary excretory function is regulated by canalicular membrane fluidity associated with phospholipid fatty acyl chains in the bilayer: implications for the pathophysiology of cholestasis.
    Hyogo H; Tazuma S; Kajiyama G
    J Gastroenterol Hepatol; 2000 Aug; 15(8):887-94. PubMed ID: 11022829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular regulation of sinusoidal liver bile acid transporters during cholestasis.
    Gartung C; Matern S
    Yale J Biol Med; 1997; 70(4):355-63. PubMed ID: 9626756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of hepatic transport and bile secretion.
    Erlinger S
    Acta Gastroenterol Belg; 1996; 59(2):159-62. PubMed ID: 8903066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cholestasis caused by inhibition of the adenosine triphosphate-dependent bile salt transport in rat liver.
    Böhme M; Müller M; Leier I; Jedlitschky G; Keppler D
    Gastroenterology; 1994 Jul; 107(1):255-65. PubMed ID: 8020669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Participation of the multispecific organic anion transporter in hepatobiliary excretion of glutathione S-conjugates, drugs and other xenobiotics.
    Makowski P; Pikuła S
    Pol J Pharmacol; 1997; 49(6):387-94. PubMed ID: 9566041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of maternal cholestasis on the kinetics of bile acid transport across the canalicular membrane of infant rat livers.
    Serrano MA; Monte MJ; Martinez-Diez MC; Marin JJ
    Int J Exp Pathol; 1997 Dec; 78(6):383-90. PubMed ID: 9516870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hepatocellular bile salt transport: lessons from cholestasis.
    Trauner M; Fickert P; Stauber RE
    Can J Gastroenterol; 2000 Nov; 14 Suppl D():99D-104D. PubMed ID: 11110621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. What is cholestasis in 1985?
    Erlinger S
    J Hepatol; 1985; 1(6):687-93. PubMed ID: 3902958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in the localization of the rat canalicular conjugate export pump Mrp2 in phalloidin-induced cholestasis.
    Rost D; Kartenbeck J; Keppler D
    Hepatology; 1999 Mar; 29(3):814-21. PubMed ID: 10051484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Bile acids in the process of canalicular bile formation].
    Sinel'nik TB; Sinel'nik OD; Ribal'chenko VK
    Fiziol Zh (1994); 2003; 49(6):80-93. PubMed ID: 14965044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ethinylestradiol treatment induces multiple canalicular membrane transport alterations in rat liver.
    Bossard R; Stieger B; O'Neill B; Fricker G; Meier PJ
    J Clin Invest; 1993 Jun; 91(6):2714-20. PubMed ID: 8514879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impaired activity of the bile canalicular organic anion transporter (Mrp2/cmoat) is not the main cause of ethinylestradiol-induced cholestasis in the rat.
    Koopen NR; Wolters H; Havinga R; Vonk RJ; Jansen PL; Müller M; Kuipers F
    Hepatology; 1998 Feb; 27(2):537-45. PubMed ID: 9462655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atp8b1 deficiency in mice reduces resistance of the canalicular membrane to hydrophobic bile salts and impairs bile salt transport.
    Paulusma CC; Groen A; Kunne C; Ho-Mok KS; Spijkerboer AL; Rudi de Waart D; Hoek FJ; Vreeling H; Hoeben KA; van Marle J; Pawlikowska L; Bull LN; Hofmann AF; Knisely AS; Oude Elferink RP
    Hepatology; 2006 Jul; 44(1):195-204. PubMed ID: 16799980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular aspects of organic compound transport across the plasma membrane of hepatocytes.
    Kamisako T; Gabazza EC; Ishihara T; Adachi Y
    J Gastroenterol Hepatol; 1999 May; 14(5):405-12. PubMed ID: 10355502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Species differences in the transport activity for organic anions across the bile canalicular membrane.
    Ishizuka H; Konno K; Shiina T; Naganuma H; Nishimura K; Ito K; Suzuki H; Sugiyama Y
    J Pharmacol Exp Ther; 1999 Sep; 290(3):1324-30. PubMed ID: 10454510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcytotic vesicle fusion is reduced in cholestatic rats: redistribution of phospholipids in the canalicular membrane.
    Hyogo H; Tazuma S; Kajiyama G
    Dig Dis Sci; 1999 Aug; 44(8):1662-8. PubMed ID: 10492150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.