These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Comparison of phantom and computer-simulated MR images of flow in a convergent geometry: implications for improved two-dimensional MR angiography. Siegel JM; Oshinski JN; Pettigrew RI; Ku DN J Magn Reson Imaging; 1995; 5(6):677-83. PubMed ID: 8748485 [TBL] [Abstract][Full Text] [Related]
3. Simultaneous highly selective MR water and fat imaging using a simple new type of spectral-spatial excitation. Schick F Magn Reson Med; 1998 Aug; 40(2):194-202. PubMed ID: 9702701 [TBL] [Abstract][Full Text] [Related]
4. Peak velocity measurements in tortuous arteries with phase contrast magnetic resonance imaging: the effect of multidirectional velocity encoding. Schubert T; Bieri O; Pansini M; Stippich C; Santini F Invest Radiol; 2014 Apr; 49(4):189-94. PubMed ID: 24300842 [TBL] [Abstract][Full Text] [Related]
5. Design of improved spectral-spatial pulses for routine clinical use. Zur Y Magn Reson Med; 2000 Mar; 43(3):410-20. PubMed ID: 10725884 [TBL] [Abstract][Full Text] [Related]
6. Pulsed magnetization transfer contrast MRI by a sequence with water selective excitation. Schick F J Comput Assist Tomogr; 1996; 20(1):73-9. PubMed ID: 8576485 [TBL] [Abstract][Full Text] [Related]
7. 0.125 mm(3) spatial resolution steady-state MR angiography of the thighs with a blood pool contrast agent using the quadrature body coil only at 1.5 Tesla. Boschewitz JM; Hadizadeh DR; Kukuk GM; Meyer C; Wilhelm K; Koscielny A; Verrel F; Gieseke J; Schild HH; Willinek WA J Magn Reson Imaging; 2014 Oct; 40(4):996-1001. PubMed ID: 24845363 [TBL] [Abstract][Full Text] [Related]
8. Reducing localized signal fluctuation in fMRI using spectral-spatial fat saturation. Xu D; Hinks RS; King KF Magn Reson Med; 2013 Mar; 69(3):825-31. PubMed ID: 22532447 [TBL] [Abstract][Full Text] [Related]
9. 4D radial coronary artery imaging within a single breath-hold: cine angiography with phase-sensitive fat suppression (CAPS). Park J; Larson AC; Zhang Q; Simonetti O; Li D Magn Reson Med; 2005 Oct; 54(4):833-40. PubMed ID: 16149060 [TBL] [Abstract][Full Text] [Related]
10. Three-dimensional time-of-flight MR angiography with variable TE (VARIETE) for fat signal reduction. Lin W; Haacke EM; Tkach JA Magn Reson Med; 1994 Nov; 32(5):678-83. PubMed ID: 7808272 [TBL] [Abstract][Full Text] [Related]
11. Quantitative assessment of intrahepatic lipids using fat-selective imaging with spectral-spatial excitation and in-/opposed-phase gradient echo imaging techniques within a study population of extremely obese patients: feasibility on a short, wide-bore MR scanner. Springer F; Machann J; Schwenzer NF; Ballweg V; Würslin C; Schneider JH; Fritsche A; Claussen CD; Schick F Invest Radiol; 2010 Aug; 45(8):484-90. PubMed ID: 20479651 [TBL] [Abstract][Full Text] [Related]
12. [MR-venography using manual flow augmentation in an open low field MR system]. König C; Wiskirchen J; Trübenbach J; Timmermann B; Pereira P; Duda SH; Claussen CD Rofo; 2001 Sep; 173(9):810-4. PubMed ID: 11582560 [TBL] [Abstract][Full Text] [Related]
14. Dixon-based fat-free MR-angiography compared to first pass and steady-state high-resolution MR-angiography using a blood pool contrast agent. Homsi R; Gieseke J; Kukuk GM; Träber F; Willinek WA; Schild HH; Hadizadeh DR Magn Reson Imaging; 2015 Nov; 33(9):1035-1042. PubMed ID: 26220860 [TBL] [Abstract][Full Text] [Related]
15. Centrally fat-saturated three-dimensional magnetic resonance angiography of the abdomen using selective central fat-saturation of k-space. Amano Y; Takahama K; Matsuda T; Amano M; Kumazaki T J Magn Reson Imaging; 2003 Nov; 18(5):567-74. PubMed ID: 14579400 [TBL] [Abstract][Full Text] [Related]
16. Artifacts and signal loss due to flow in the presence of B(o) inhomogeneity. Drangova M; Pelc NJ Magn Reson Med; 1996 Jan; 35(1):126-30. PubMed ID: 8771030 [TBL] [Abstract][Full Text] [Related]