BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 9626987)

  • 1. The role of oxygen free radicals in cisplatin-induced acute renal failure in rats.
    Matsushima H; Yonemura K; Ohishi K; Hishida A
    J Lab Clin Med; 1998 Jun; 131(6):518-26. PubMed ID: 9626987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of oxygen free radical scavengers on uranium-induced acute renal failure in rats.
    Kato A; Hishida A; Nakajima T
    Free Radic Biol Med; 1994 Jun; 16(6):855-9. PubMed ID: 8070692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms for protective effects of free radical scavengers on gentamicin-mediated nephropathy in rats.
    Nakajima T; Hishida A; Kato A
    Am J Physiol; 1994 Mar; 266(3 Pt 2):F425-31. PubMed ID: 8160791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen free radicals in ischemic acute renal failure in the rat.
    Paller MS; Hoidal JR; Ferris TF
    J Clin Invest; 1984 Oct; 74(4):1156-64. PubMed ID: 6434591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attenuation of cisplatin-induced acute renal failure is associated with less apoptotic cell death.
    Zhou H; Miyaji T; Kato A; Fujigaki Y; Sano K; Hishida A
    J Lab Clin Med; 1999 Dec; 134(6):649-58. PubMed ID: 10595794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydroxyl radical scavenger ameliorates cisplatin-induced nephrotoxicity by preventing oxidative stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney mitochondria.
    Santos NA; Bezerra CS; Martins NM; Curti C; Bianchi ML; Santos AC
    Cancer Chemother Pharmacol; 2008 Jan; 61(1):145-55. PubMed ID: 17396264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The dimethylthiourea-induced attenuation of cisplatin nephrotoxicity is associated with the augmented induction of heat shock proteins.
    Tsuji T; Kato A; Yasuda H; Miyaji T; Luo J; Sakao Y; Ito H; Fujigaki Y; Hishida A
    Toxicol Appl Pharmacol; 2009 Jan; 234(2):202-8. PubMed ID: 18992762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antioxidant ameliorates cisplatin-induced renal tubular cell death through inhibition of death receptor-mediated pathways.
    Tsuruya K; Tokumoto M; Ninomiya T; Hirakawa M; Masutani K; Taniguchi M; Fukuda K; Kanai H; Hirakata H; Iida M
    Am J Physiol Renal Physiol; 2003 Aug; 285(2):F208-18. PubMed ID: 12684229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro and in vivo evidence suggesting a role for iron in cisplatin-induced nephrotoxicity.
    Baliga R; Zhang Z; Baliga M; Ueda N; Shah SV
    Kidney Int; 1998 Feb; 53(2):394-401. PubMed ID: 9461098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cisplatin-induced oxidative stress stimulates renal Fas ligand shedding.
    Soni H; Kaminski D; Gangaraju R; Adebiyi A
    Ren Fail; 2018 Nov; 40(1):314-322. PubMed ID: 29619879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oral erdosteine administration attenuates cisplatin-induced renal tubular damage in rats.
    Yildirim Z; Sogut S; Odaci E; Iraz M; Ozyurt H; Kotuk M; Akyol O
    Pharmacol Res; 2003 Feb; 47(2):149-56. PubMed ID: 12543063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential roles of hydrogen peroxide and hydroxyl radical in cisplatin-induced cell death in renal proximal tubular epithelial cells.
    Baek SM; Kwon CH; Kim JH; Woo JS; Jung JS; Kim YK
    J Lab Clin Med; 2003 Sep; 142(3):178-86. PubMed ID: 14532906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Free radical scavengers in mercuric chloride-induced acute renal failure in the rat.
    Paller MS
    J Lab Clin Med; 1985 Apr; 105(4):459-63. PubMed ID: 3920337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of hemodynamic and tubular factors in gentamicin-mediated nephropathy.
    Hishida A; Nakajima T; Yamada M; Kato A; Honda N
    Ren Fail; 1994; 16(1):109-16. PubMed ID: 8184137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of increased oxygen free radical activity in the pathogenesis of uremic hypertension.
    Vaziri ND; Oveisi F; Ding Y
    Kidney Int; 1998 Jun; 53(6):1748-54. PubMed ID: 9607208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of hydroxyl radical scavenging on cisplatin-induced p53 activation, tubular cell apoptosis and nephrotoxicity.
    Jiang M; Wei Q; Pabla N; Dong G; Wang CY; Yang T; Smith SB; Dong Z
    Biochem Pharmacol; 2007 May; 73(9):1499-510. PubMed ID: 17291459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence suggesting a role for hydroxyl radical in glycerol-induced acute renal failure.
    Shah SV; Walker PD
    Am J Physiol; 1988 Sep; 255(3 Pt 2):F438-43. PubMed ID: 2843051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interleukin-6 modulates oxidative stress produced during the development of cisplatin nephrotoxicity.
    Mitazaki S; Hashimoto M; Matsuhashi Y; Honma S; Suto M; Kato N; Nakagawasai O; Tan-No K; Hiraiwa K; Yoshida M; Abe S
    Life Sci; 2013 Apr; 92(12):694-700. PubMed ID: 23384965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. p38 MAP kinase inhibition ameliorates cisplatin nephrotoxicity in mice.
    Ramesh G; Reeves WB
    Am J Physiol Renal Physiol; 2005 Jul; 289(1):F166-74. PubMed ID: 15701814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carnosic acid attenuates renal injury in an experimental model of rat cisplatin-induced nephrotoxicity.
    Sahu BD; Rentam KK; Putcha UK; Kuncha M; Vegi GM; Sistla R
    Food Chem Toxicol; 2011 Dec; 49(12):3090-7. PubMed ID: 21930180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.