These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 9627423)

  • 1. A comparison of intra- and interpersonal interlimb coordination: coordination breakdowns and coupling strength.
    Schmidt RC; Bienvenu M; Fitzpatrick PA; Amazeen PG
    J Exp Psychol Hum Percept Perform; 1998 Jun; 24(3):884-900. PubMed ID: 9627423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing the attractor strength of intra- and interpersonal interlimb coordination using cross-recurrence analysis.
    Richardson MJ; Lopresti-Goodman S; Mancini M; Kay B; Schmidt RC
    Neurosci Lett; 2008 Jun; 438(3):340-5. PubMed ID: 18487016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergies in intra- and interpersonal interlimb rhythmic coordination.
    Black DP; Riley MA; McCord CK
    Motor Control; 2007 Oct; 11(4):348-73. PubMed ID: 18042965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinguishing between the effects of frequency and amplitude on interlimb coupling in tapping a 2:3 polyrhythm.
    Peper CE; Beek PJ
    Exp Brain Res; 1998 Jan; 118(1):78-92. PubMed ID: 9547080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental coupling modulates the attractors of rhythmic coordination.
    Kudo K; Park H; Kay BA; Turvey MT
    J Exp Psychol Hum Percept Perform; 2006 Jun; 32(3):599-609. PubMed ID: 16822126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early learning differences between intra- and interpersonal interlimb coordination.
    Annand CT; Grover FM; Silva PL; Holden JG; Riley MA
    Hum Mov Sci; 2020 Oct; 73():102682. PubMed ID: 32971412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase-entrainment dynamics of visually coupled rhythmic movements.
    Schmidt RC; Turvey MT
    Biol Cybern; 1994; 70(4):369-76. PubMed ID: 8148414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal coupling is more robust than spatial coupling: an investigation of interlimb coordination after stroke.
    Rose DK; Winstein CJ
    J Mot Behav; 2013; 45(4):313-24. PubMed ID: 23819649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffusive, Synaptic, and Synergetic Coupling: An Evaluation Through In-Phase and Antiphase Rhythmic Movements.
    Sternad D; Amazeen EL; Turvey MT
    J Mot Behav; 1996 Sep; 28(3):255-269. PubMed ID: 12529208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Symmetry, broken symmetry, and handedness in bimanual coordination dynamics.
    Treffner PJ; Turvey MT
    Exp Brain Res; 1996; 107(3):463-78. PubMed ID: 8821386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relative phase dynamics in perturbed interlimb coordination: the effects of frequency and amplitude.
    Post AA; Peper CE; Beek PJ
    Biol Cybern; 2000 Dec; 83(6):529-42. PubMed ID: 11130585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attentional loads associated with interlimb interactions underlying rhythmic bimanual coordination.
    Ridderikhoff A; Peper CL; Beek PJ
    Cognition; 2008 Dec; 109(3):372-88. PubMed ID: 19014874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupling dynamics in interlimb coordination.
    Schmidt RC; Shaw BK; Turvey MT
    J Exp Psychol Hum Percept Perform; 1993 Apr; 19(2):397-415. PubMed ID: 8473847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions between interlimb and intralimb coordination during the performance of bimanual multijoint movements.
    Li Y; Levin O; Forner-Cordero A; Swinnen SP
    Exp Brain Res; 2005 Jun; 163(4):515-26. PubMed ID: 15657696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of movement stability and congruency on the emergence of spontaneous interpersonal coordination.
    Coey C; Varlet M; Schmidt RC; Richardson MJ
    Exp Brain Res; 2011 Jun; 211(3-4):483-93. PubMed ID: 21526336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling rhythmic interlimb coordination: beyond the Haken-Kelso-Bunz model.
    Beek PJ; Peper CE; Daffertshofer A
    Brain Cogn; 2002 Feb; 48(1):149-65. PubMed ID: 11812039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Are frequency-induced transitions in rhythmic coordination mediated by a drop in amplitude?
    Peper CE; Beek PJ
    Biol Cybern; 1998 Oct; 79(4):291-300. PubMed ID: 9830704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interlimb coupling strength scales with movement amplitude.
    Peper CL; de Boer BJ; de Poel HJ; Beek PJ
    Neurosci Lett; 2008 May; 437(1):10-4. PubMed ID: 18423866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency detuning of the phase entrainment dynamics of visually coupled rhythmic movements.
    Amazeen PG; Schmidt RC; Turvey MT
    Biol Cybern; 1995; 72(6):511-8. PubMed ID: 7612722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Re-Appraisal of the Effect of Amplitude on the Stability of Interlimb Coordination Based on Tightened Normalization Procedures.
    de Poel HJ; Roerdink M; Peper CLE; Beek PJ
    Brain Sci; 2020 Oct; 10(10):. PubMed ID: 33066054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.