These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Effects of intramammary infection and parity on calf weaning weight and milk quality in beef cows. Paape MJ; Duenas MI; Wettemann RP; Douglass LW J Anim Sci; 2000 Oct; 78(10):2508-14. PubMed ID: 11048914 [TBL] [Abstract][Full Text] [Related]
4. Association of coagulase-negative staphylococcal species, mammary quarter milk somatic cell count, and persistence of intramammary infection in dairy cattle. Fry PR; Middleton JR; Dufour S; Perry J; Scholl D; Dohoo I J Dairy Sci; 2014; 97(8):4876-85. PubMed ID: 24931524 [TBL] [Abstract][Full Text] [Related]
5. Pathogen effects on milk yield and composition in chronic subclinical mastitis in dairy cows. Gonçalves JL; Kamphuis C; Vernooij H; Araújo JP; Grenfell RC; Juliano L; Anderson KL; Hogeveen H; Dos Santos MV Vet J; 2020 Aug; 262():105473. PubMed ID: 32792091 [TBL] [Abstract][Full Text] [Related]
6. Electrical conductivity of milk for detection of mastitis. Fernando RS; Rindsig RB; Spahr SL J Dairy Sci; 1982 Apr; 65(4):659-64. PubMed ID: 7047600 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of minor pathogen intramammary infection, susceptibility parameters, and somatic cell counts on the development of new intramammary infections with major mastitis pathogens. Reyher KK; Dohoo IR; Scholl DT; Keefe GP J Dairy Sci; 2012 Jul; 95(7):3766-80. PubMed ID: 22720933 [TBL] [Abstract][Full Text] [Related]
8. Association between teat skin colonization and intramammary infection with Staphylococcus aureus and Streptococcus agalactiae in herds with automatic milking systems. Svennesen L; Nielsen SS; Mahmmod YS; Krömker V; Pedersen K; Klaas IC J Dairy Sci; 2019 Jan; 102(1):629-639. PubMed ID: 30415854 [TBL] [Abstract][Full Text] [Related]
9. Acute-phase inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4) levels in serum and milk of cows with subclinical mastitis caused by Streptococcus species and coagulase-negative Staphylococcus species. Soler L; Dąbrowski R; García N; Alava MA; Lampreave F; Piñeiro M; Wawron W; Szczubiał M; Bochniarz M J Dairy Sci; 2019 Jan; 102(1):539-546. PubMed ID: 30343922 [TBL] [Abstract][Full Text] [Related]
10. The effect of intramammary infection in early lactation with non-aureus staphylococci in general and Staphylococcus chromogenes specifically on quarter milk somatic cell count and quarter milk yield. Valckenier D; Piepers S; De Visscher A; De Vliegher S J Dairy Sci; 2020 Jan; 103(1):768-782. PubMed ID: 31677845 [TBL] [Abstract][Full Text] [Related]
11. Udder infections with Staphylococcus aureus, Streptococcus dysgalactiae, and Streptococcus uberis at calving in dairy herds with suboptimal udder health. Lundberg Å; Nyman AK; Aspán A; Börjesson S; Unnerstad HE; Waller KP J Dairy Sci; 2016 Mar; 99(3):2102-2117. PubMed ID: 26805990 [TBL] [Abstract][Full Text] [Related]
12. Milk leucocyte population patterns in bovine udder infection of different aetiology. Leitner G; Shoshani E; Krifucks O; Chaffer M; Saran A J Vet Med B Infect Dis Vet Public Health; 2000 Oct; 47(8):581-9. PubMed ID: 11075546 [TBL] [Abstract][Full Text] [Related]
13. Diagnosing intramammary infections: evaluation of composite milk samples to detect intramammary infections. Reyher KK; Dohoo IR J Dairy Sci; 2011 Jul; 94(7):3387-96. PubMed ID: 21700024 [TBL] [Abstract][Full Text] [Related]
14. Mastitis in beef cows and its effects on calf weight gain. Newman MA; Wilson LL; Cash EH; Eberhart RJ; Drake TR J Anim Sci; 1991 Nov; 69(11):4259-72. PubMed ID: 1752802 [TBL] [Abstract][Full Text] [Related]
15. Elimination of selected mastitis pathogens during the dry period. Timonen AAE; Katholm J; Petersen A; Orro T; Mõtus K; Kalmus P J Dairy Sci; 2018 Oct; 101(10):9332-9338. PubMed ID: 30055920 [TBL] [Abstract][Full Text] [Related]
16. A comparative field trial of cephalonium and cloxacillin for dry cow therapy for mastitis in Australian dairy cows. Shephard RW; Burman S; Marcun P Aust Vet J; 2004 Oct; 82(10):624-9. PubMed ID: 15887388 [TBL] [Abstract][Full Text] [Related]
17. Sensitivity and specificity of PCR analysis and bacteriological culture of milk samples for identification of intramammary infections in dairy cows using latent class analysis. Nyman AK; Persson Waller K; Emanuelson U; Frössling J Prev Vet Med; 2016 Dec; 135():123-131. PubMed ID: 27931924 [TBL] [Abstract][Full Text] [Related]
18. Effect of recombinant bovine somatotropin on milk production and composition of cows with Streptococcus uberis mastitis. Hoeben D; Burvenich C; Eppard PJ; Hard DL J Dairy Sci; 1999 Aug; 82(8):1671-83. PubMed ID: 10480092 [TBL] [Abstract][Full Text] [Related]
19. Mediation analysis to estimate direct and indirect milk losses due to clinical mastitis in dairy cattle. Detilleux J; Kastelic JP; Barkema HW Prev Vet Med; 2015 Mar; 118(4):449-56. PubMed ID: 25638330 [TBL] [Abstract][Full Text] [Related]
20. Effect of environmental temperature stress on intramammary infections of dairy cows and monitoring of body and intramammary temperatures by radiotelemetry. Brown RW; Thomas JL; Cook HM; Riley JL; Booth GD Am J Vet Res; 1977 Feb; 38(2):181-7. PubMed ID: 842915 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]