These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 9628345)

  • 61. Motifs Q and I are required for ATP hydrolysis but not for ATP binding in SWI2/SNF2 proteins.
    Nongkhlaw M; Gupta M; Komath SS; Muthuswami R
    Biochemistry; 2012 May; 51(18):3711-22. PubMed ID: 22510062
    [TBL] [Abstract][Full Text] [Related]  

  • 62. S-adenosyl homocysteine and DNA ends stimulate promiscuous nuclease activities in the Type III restriction endonuclease EcoPI.
    Peakman LJ; Szczelkun MD
    Nucleic Acids Res; 2009 Jul; 37(12):3934-45. PubMed ID: 19401438
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Evolutionary relationship of Alw26I, Eco31I and Esp3I, restriction endonucleases that recognise overlapping sequences.
    Bitinaite J; Mitkaite G; Dauksaite V; Jakubauskas A; Timinskas A; Vaisvila R; Lubys A; Janulaitis A
    Mol Genet Genomics; 2002 Jul; 267(5):664-72. PubMed ID: 12172806
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Dissociation from DNA of Type III Restriction-Modification enzymes during helicase-dependent motion and following endonuclease activity.
    Tóth J; van Aelst K; Salmons H; Szczelkun MD
    Nucleic Acids Res; 2012 Aug; 40(14):6752-64. PubMed ID: 22523084
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Function of Pro-185 in the ProCys of conserved motif IV in the EcoRII [cytosine-C5]-DNA methyltransferase.
    Kossykh VG; Schlagman SL; Hattman S
    FEBS Lett; 1995 Aug; 370(1-2):75-7. PubMed ID: 7649307
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Substrate DNA and cofactor regulate the activities of a multi-functional restriction-modification enzyme, BcgI.
    Kong H; Smith CL
    Nucleic Acids Res; 1997 Sep; 25(18):3687-92. PubMed ID: 9278491
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Characterization of AloI, a restriction-modification system of a new type.
    Cesnaviciene E; Petrusyte M; Kazlauskiene R; Maneliene Z; Timinskas A; Lubys A; Janulaitis A
    J Mol Biol; 2001 Nov; 314(2):205-16. PubMed ID: 11718555
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Analyzing the functional organization of a novel restriction modification system, the BcgI system.
    Kong H
    J Mol Biol; 1998 Jun; 279(4):823-32. PubMed ID: 9642063
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Identification of the recognition sequence for the M.StyLTI methyltransferase of Salmonella typhimurium LT7: an asymmetric site typical of type-III enzymes.
    De Backer O; Colson C
    Gene; 1991 Jan; 97(1):103-7. PubMed ID: 1995420
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Widespread occurrence of three sequence motifs in diverse S-adenosylmethionine-dependent methyltransferases suggests a common structure for these enzymes.
    Kagan RM; Clarke S
    Arch Biochem Biophys; 1994 May; 310(2):417-27. PubMed ID: 8179327
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Structural basis of asymmetric DNA methylation and ATP-triggered long-range diffusion by EcoP15I.
    Gupta YK; Chan SH; Xu SY; Aggarwal AK
    Nat Commun; 2015 Jun; 6():7363. PubMed ID: 26067164
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Mutual activation of two restriction endonucleases: interaction of EcoP1 and EcoP15.
    Kunz A; Mackeldanz P; Mücke M; Meisel A; Reuter M; Schroeder C; Krüger DH
    Biol Chem; 1998; 379(4-5):617-20. PubMed ID: 9628367
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Mutational analysis defines the roles of conserved amino acid residues in the predicted catalytic pocket of the rRNA:m6A methyltransferase ErmC'.
    Maravić G; Feder M; Pongor S; Flögel M; Bujnicki JM
    J Mol Biol; 2003 Sep; 332(1):99-109. PubMed ID: 12946350
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Stopped-flow and mutational analysis of base flipping by the Escherichia coli Dam DNA-(adenine-N6)-methyltransferase.
    Liebert K; Hermann A; Schlickenrieder M; Jeltsch A
    J Mol Biol; 2004 Aug; 341(2):443-54. PubMed ID: 15276835
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Site-directed mutagenesis studies with EcoRV restriction endonuclease to identify regions involved in recognition and catalysis.
    Thielking V; Selent U; Köhler E; Wolfes H; Pieper U; Geiger R; Urbanke C; Winkler FK; Pingoud A
    Biochemistry; 1991 Jul; 30(26):6416-22. PubMed ID: 1647200
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Translocation, switching and gating: potential roles for ATP in long-range communication on DNA by Type III restriction endonucleases.
    Szczelkun MD
    Biochem Soc Trans; 2011 Apr; 39(2):589-94. PubMed ID: 21428945
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Site-directed mutagenesis of motif III in PcrA helicase reveals a role in coupling ATP hydrolysis to strand separation.
    Dillingham MS; Soultanas P; Wigley DB
    Nucleic Acids Res; 1999 Aug; 27(16):3310-7. PubMed ID: 10454638
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The role of the preserved sequences of Dam methylase.
    Guyot JB; Grassi J; Hahn U; Guschlbauer W
    Nucleic Acids Res; 1993 Jul; 21(14):3183-90. PubMed ID: 8341592
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Mechanisms for auto-inhibition and forced product release in glycine N-methyltransferase: crystal structures of wild-type, mutant R175K and S-adenosylhomocysteine-bound R175K enzymes.
    Huang Y; Komoto J; Konishi K; Takata Y; Ogawa H; Gomi T; Fujioka M; Takusagawa F
    J Mol Biol; 2000 Apr; 298(1):149-62. PubMed ID: 10756111
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Mechanistic insights into type III restriction enzymes.
    Raghavendra NK; Bheemanaik S; Rao DN
    Front Biosci (Landmark Ed); 2012 Jan; 17(3):1094-107. PubMed ID: 22201792
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.