These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 9628480)

  • 1. The structure of PurR mutant L54M shows an alternative route to DNA kinking.
    Arvidson DN; Lu F; Faber C; Zalkin H; Brennan RG
    Nat Struct Biol; 1998 Jun; 5(6):436-41. PubMed ID: 9628480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of LacI member, PurR, bound to DNA: minor groove binding by alpha helices.
    Schumacher MA; Choi KY; Zalkin H; Brennan RG
    Science; 1994 Nov; 266(5186):763-70. PubMed ID: 7973627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of lysine 55 in determining the specificity of the purine repressor for its operators through minor groove interactions.
    Glasfeld A; Koehler AN; Schumacher MA; Brennan RG
    J Mol Biol; 1999 Aug; 291(2):347-61. PubMed ID: 10438625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The X-ray structure of the PurR-guanine-purF operator complex reveals the contributions of complementary electrostatic surfaces and a water-mediated hydrogen bond to corepressor specificity and binding affinity.
    Schumacher MA; Glasfeld A; Zalkin H; Brennan RG
    J Biol Chem; 1997 Sep; 272(36):22648-53. PubMed ID: 9278422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of residue 147 in the gene regulatory function of the Escherichia coli purine repressor.
    Huffman JL; Lu F; Zalkin H; Brennan RG
    Biochemistry; 2002 Jan; 41(2):511-20. PubMed ID: 11781089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural comparison of the free and DNA-bound forms of the purine repressor DNA-binding domain.
    Nagadoi A; Morikawa S; Nakamura H; Enari M; Kobayashi K; Yamamoto H; Sampei G; Mizobuchi K; Schumacher MA; Brennan RG
    Structure; 1995 Nov; 3(11):1217-24. PubMed ID: 8591032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ion concentration and temperature dependence of DNA binding: comparison of PurR and LacI repressor proteins.
    Moraitis MI; Xu H; Matthews KS
    Biochemistry; 2001 Jul; 40(27):8109-17. PubMed ID: 11434780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fine-tuning function: correlation of hinge domain interactions with functional distinctions between LacI and PurR.
    Swint-Kruse L; Larson C; Pettitt BM; Matthews KS
    Protein Sci; 2002 Apr; 11(4):778-94. PubMed ID: 11910022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct and indirect readout in mutant Met repressor-operator complexes.
    Garvie CW; Phillips SE
    Structure; 2000 Sep; 8(9):905-14. PubMed ID: 10986458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of corepressor-mediated specific DNA binding by the purine repressor.
    Schumacher MA; Choi KY; Lu F; Zalkin H; Brennan RG
    Cell; 1995 Oct; 83(1):147-55. PubMed ID: 7553867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational changes of purine repressor DNA-binding domain upon complexation with DNA.
    Nagadoi A; Nakazawa K; Morikawa S; Nakamura H; Sampei G; Mizobuchi K; Yamamoto H; Schumacher MA; Brennan RG; Nishimura Y
    Nucleic Acids Symp Ser; 1995; (34):63-4. PubMed ID: 8841553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lac repressor at last.
    Sauer RT
    Structure; 1996 Mar; 4(3):219-22. PubMed ID: 8805532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystallographic analysis of Lac repressor bound to natural operator O1.
    Bell CE; Lewis M
    J Mol Biol; 2001 Oct; 312(5):921-6. PubMed ID: 11580238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Escherichia coli purine repressor: key residues for the allosteric transition between active and inactive conformations and for interdomain signaling.
    Lu F; Brennan RG; Zalkin H
    Biochemistry; 1998 Nov; 37(45):15680-90. PubMed ID: 9843372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional structure of the DNA-binding domain of the fructose repressor from Escherichia coli by 1H and 15N NMR.
    Penin F; Geourjon C; Montserret R; Böckmann A; Lesage A; Yang YS; Bonod-Bidaud C; Cortay JC; Nègre D; Cozzone AJ; Deléage G
    J Mol Biol; 1997 Jul; 270(3):496-510. PubMed ID: 9237914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contacts between Tet repressor and tet operator revealed by new recognition specificities of single amino acid replacement mutants.
    Baumeister R; Helbl V; Hillen W
    J Mol Biol; 1992 Aug; 226(4):1257-70. PubMed ID: 1518055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural analysis of the purine repressor, an Escherichia coli DNA-binding protein.
    Schumacher MA; Macdonald JR; Björkman J; Mowbray SL; Brennan RG
    J Biol Chem; 1993 Jun; 268(17):12282-8. PubMed ID: 8509365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional consequences of exchanging domains between LacI and PurR are mediated by the intervening linker sequence.
    Tungtur S; Egan SM; Swint-Kruse L
    Proteins; 2007 Jul; 68(1):375-88. PubMed ID: 17436321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystallization and preliminary X-ray analysis of an Escherichia coli purine repressor-hypoxanthine-DNA complex.
    Schumacher MA; Choi KY; Zalkin H; Brennan RG
    J Mol Biol; 1994 Sep; 242(3):302-5. PubMed ID: 8089849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutagenesis of amino acid residues required for binding of corepressors to the purine repressor.
    Choi KY; Lu F; Zalkin H
    J Biol Chem; 1994 Sep; 269(39):24066-72. PubMed ID: 7929058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.