These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 9628747)

  • 1. An AI approach to dynamic visual field testing.
    Cho KW; Liu X; Loizou G; Wu JX
    Comput Biomed Res; 1998 Jun; 31(3):143-63. PubMed ID: 9628747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glaucoma diagnostics.
    Geimer SA
    Acta Ophthalmol; 2013 Feb; 91 Thesis 1():1-32. PubMed ID: 23384049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual Field Prediction using Recurrent Neural Network.
    Park K; Kim J; Lee J
    Sci Rep; 2019 Jun; 9(1):8385. PubMed ID: 31182763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of clinicians and an artificial neural network regarding accuracy and certainty in performance of visual field assessment for the diagnosis of glaucoma.
    Andersson S; Heijl A; Bizios D; Bengtsson B
    Acta Ophthalmol; 2013 Aug; 91(5):413-7. PubMed ID: 22583841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards an optimal perimetric strategy for progression detection in glaucoma: from fixed-space to adaptive inter-test intervals.
    Jansonius NM
    Graefes Arch Clin Exp Ophthalmol; 2006 Mar; 244(3):390-3. PubMed ID: 16049704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual field testing with reduced sets of test points. A computerized analysis.
    Krakau CE
    Doc Ophthalmol; 1989 Sep; 73(1):71-80. PubMed ID: 2698335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial Intelligence Algorithms to Diagnose Glaucoma and Detect Glaucoma Progression: Translation to Clinical Practice.
    Mursch-Edlmayr AS; Ng WS; Diniz-Filho A; Sousa DC; Arnold L; Schlenker MB; Duenas-Angeles K; Keane PA; Crowston JG; Jayaram H
    Transl Vis Sci Technol; 2020 Oct; 9(2):55. PubMed ID: 33117612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progression detection in glaucoma can be made more efficient by using a variable interval between successive visual field tests.
    Jansonius NM
    Graefes Arch Clin Exp Ophthalmol; 2007 Nov; 245(11):1647-51. PubMed ID: 17437124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review of current technology used in evaluating visual function in glaucoma.
    Turalba AV; Grosskreutz C
    Semin Ophthalmol; 2010; 25(5-6):309-16. PubMed ID: 21091017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of Quality and Output of Different Optimal Perimetric Testing Approaches in Children With Glaucoma.
    Patel DE; Cumberland PM; Walters BC; Russell-Eggitt I; Brookes J; Papadopoulos M; Khaw PT; Viswanathan AC; Garway-Heath D; Cortina-Borja M; Rahi JS;
    JAMA Ophthalmol; 2018 Feb; 136(2):155-161. PubMed ID: 29285534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual fields in glaucoma: Where are we now?
    Lee GA; Kong GYX; Liu CH
    Clin Exp Ophthalmol; 2023 Mar; 51(2):162-169. PubMed ID: 36751125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Screening for visual field abnormalities with automated perimetry.
    Keltner JL; Johnson CA
    Surv Ophthalmol; 1983; 28(3):175-83. PubMed ID: 6422573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated visual fields: a new approach to measuring the binocular field of view and visual disability.
    Crabb DP; Viswanathan AC
    Graefes Arch Clin Exp Ophthalmol; 2005 Mar; 243(3):210-6. PubMed ID: 15806374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine Learning in the Detection of the Glaucomatous Disc and Visual Field.
    Smits DJ; Elze T; Wang H; Pasquale LR
    Semin Ophthalmol; 2019; 34(4):232-242. PubMed ID: 31132292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parallel rarebits: a novel, large-scale visual field screening method.
    Lin SR; Fijalkowski N; Lin BR; Li F; Singh K; Chang RT
    Clin Exp Optom; 2014 Nov; 97(6):528-33. PubMed ID: 25331077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of threshold estimation and learning effect of two perimetric strategies, SITA Fast and CLIP, in damaged visual fields.
    Capris P; Autuori S; Capris E; Papadia M
    Eur J Ophthalmol; 2008; 18(2):182-90. PubMed ID: 18320509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peristat: a computer-based perimetry self-test for cost-effective population screening of glaucoma.
    Ianchulev T; Pham P; Makarov V; Francis B; Minckler D
    Curr Eye Res; 2005 Jan; 30(1):1-6. PubMed ID: 15875358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial classification of glaucomatous visual field loss.
    Henson DB; Spenceley SE; Bull DR
    Br J Ophthalmol; 1996 Jun; 80(6):526-31. PubMed ID: 8759263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can DMCO Detect Visual Field Loss in Neurological Patients? A Secondary Validation Study.
    Olsen AS; Steensberg AT; la Cour M; Kjaer TW; Damato B; Pinborg LH; Kolko M
    Ophthalmic Res; 2017; 58(2):85-93. PubMed ID: 28535498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An automatic perimeter for glaucoma visual field screening and control. Construction and clinical cases.
    Heijl A; Krakau CE
    Albrecht Von Graefes Arch Klin Exp Ophthalmol; 1975 Oct; 197(1):13-23. PubMed ID: 1081847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.