These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 9629273)

  • 41. Semaphorins and neuropilins: new players in the neuroendocrine control of the intrathymic T-cell migration in humans.
    Mendes-da-Cruz DA; Linhares-Lacerda L; Smaniotto S; Dardenne M; Savino W
    Exp Physiol; 2012 Nov; 97(11):1146-50. PubMed ID: 22327328
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Triiodothyronine modulates thymocyte migration.
    Ribeiro-Carvalho MM; Lima-Quaresma KRF; Mouço T; Carvalho VF; Mello-Coelho V; Savino W
    Scand J Immunol; 2007 Jul; 66(1):17-25. PubMed ID: 17587342
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Thymic heterotypic cellular complexes in gene-targeted mice with defined blocks in T cell development and adhesion molecule expression.
    Oliveira-dos-Santos AJ; Penninger JM; Rieker-Geley T; Matsumoto G; Mak TM; Wick G
    Eur J Immunol; 1998 Sep; 28(9):2882-92. PubMed ID: 9754575
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Functional analysis of neuropeptides in avian thymocyte development.
    Silva AB; Aw D; Palmer DB
    Dev Comp Immunol; 2008; 32(4):410-20. PubMed ID: 17892898
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Plasticity of neuroendocrine-thymus interactions during ontogeny and ageing: role of zinc and arginine.
    Mocchegiani E; Santarelli L; Costarelli L; Cipriano C; Muti E; Giacconi R; Malavolta M
    Ageing Res Rev; 2006 Aug; 5(3):281-309. PubMed ID: 16904953
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Galectin-3 modulates carbohydrate-dependent thymocyte interactions with the thymic microenvironment.
    Villa-Verde DM; Silva-Monteiro E; Jasiulionis MG; Farias-De-Oliveira DA; Brentani RR; Savino W; Chammas R
    Eur J Immunol; 2002 May; 32(5):1434-44. PubMed ID: 11981832
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cellular and molecular aspects of thymic T-cell education in neuroendocrine self principles. Implications for autoimmunity.
    Geenen V; Martens H; Vandersmissen E; Achour I; Kecha O; Franchimont D
    Ann N Y Acad Sci; 1998 May; 840():328-37. PubMed ID: 9629260
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Quantitative and functional expression of somatostatin receptor subtypes in human thymocytes.
    Ferone D; Pivonello R; Van Hagen PM; Dalm VA; Lichtenauer-Kaligis EG; Waaijers M; Van Koetsveld PM; Mooy DM; Colao A; Minuto F; Lamberts SW; Hofland LJ
    Am J Physiol Endocrinol Metab; 2002 Nov; 283(5):E1056-66. PubMed ID: 12376335
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Maturation of medullary thymic epithelium requires thymocytes expressing fully assembled CD3-TCR complexes.
    Shores EW; Van Ewijk W; Singer A
    Int Immunol; 1994 Sep; 6(9):1393-402. PubMed ID: 7819148
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A cellular automata-based mathematical model for thymocyte development.
    Souza-e-Silva H; Savino W; Feijóo RA; Vasconcelos AT
    PLoS One; 2009 Dec; 4(12):e8233. PubMed ID: 20011042
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The thymus microenvironment in regulating thymocyte differentiation.
    Gameiro J; Nagib P; Verinaud L
    Cell Adh Migr; 2010; 4(3):382-90. PubMed ID: 20418658
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Neurotransmitters Modulate Intrathymic T-cell Development.
    Francelin C; Veneziani LP; Farias ADS; Mendes-da-Cruz DA; Savino W
    Front Cell Dev Biol; 2021; 9():668067. PubMed ID: 33928093
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Neuroendocrine influence on thymic haematopoiesis via the reticulo-epithelial cellular network.
    Bodey B
    Expert Opin Ther Targets; 2002 Feb; 6(1):57-72. PubMed ID: 11901481
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Plasticity of neuroendocrine-thymus interactions during aging.
    Fabris N; Mocchegiani E; Provinciali M
    Exp Gerontol; 1997; 32(4-5):415-29. PubMed ID: 9315446
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The role of zinc in pre- and postnatal mammalian thymic immunohistogenesis.
    Bodey B; Bodey B; Siegel SE; Kaiser HE
    In Vivo; 1998; 12(6):695-722. PubMed ID: 9891234
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Involution of the mammalian thymus, one of the leading regulators of aging.
    Bodey B; Bodey B; Siegel SE; Kaiser HE
    In Vivo; 1997; 11(5):421-40. PubMed ID: 9427047
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Is there a possible single mediator in modulating neuroendocrine-thymus interaction in ageing?
    Mocchegiani E; Malavolta M; Costarelli L; Giacconi R; Piacenza F; Lattanzio F; Basso A
    Curr Aging Sci; 2013 Feb; 6(1):99-107. PubMed ID: 23895527
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Growth hormone in the presence of laminin modulates interaction of human thymic epithelial cells and thymocytes in vitro.
    Lins MP; de Araújo Vieira LF; Rosa AA; Smaniotto S
    Biol Res; 2016 Sep; 49(1):37. PubMed ID: 27590178
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Plasticity of neuro-endocrine-thymus interactions during aging--a minireview.
    Fabris N; Mocchegiani E; Provinciali M
    Cell Mol Biol (Noisy-le-grand); 1997 Jun; 43(4):529-41. PubMed ID: 9220146
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The thymus gland is a target in malnutrition.
    Savino W
    Eur J Clin Nutr; 2002 Aug; 56 Suppl 3():S46-9. PubMed ID: 12142962
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.