These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 963009)
1. Catalytic activation of transfer ribonucleic acid by a mammalian protein. Dickman SR; Boll DJ Biochemistry; 1976 Sep; 15(18):3925-32. PubMed ID: 963009 [TBL] [Abstract][Full Text] [Related]
2. Interactions of aminoacyl-tRNA synthetases in high-molecular-weight multienzyme complexes from rat liver. Dang CV; Ferguson B; Burke DJ; Garcia V; Yang DC Biochim Biophys Acta; 1985 Jul; 829(3):319-26. PubMed ID: 4005265 [TBL] [Abstract][Full Text] [Related]
3. Amino acids are not all initially attached to the same position on transfer RNA molecules. Fraser TH; Rich A Proc Natl Acad Sci U S A; 1975 Aug; 72(8):3044-8. PubMed ID: 1103136 [TBL] [Abstract][Full Text] [Related]
4. The plant aminoacyl-tRNA synthetases. Effect of sodium chloride on tRNA aminoacylation and aminoacyl-tRNA decomposition catalysed by aminoacyl-tRNA synthetases from yellow lupin seeds. Jakubowski H; Pawelkiewicz J Acta Biochim Pol; 1977; 24(2):163-70. PubMed ID: 195427 [TBL] [Abstract][Full Text] [Related]
5. Initial position of aminoacylation of individual Escherichia coli, yeast, and calf liver transfer RNAs. Chinault AC; Tan KH; Hassur SM; Hecht SM Biochemistry; 1977 Feb; 16(4):766-76. PubMed ID: 319826 [TBL] [Abstract][Full Text] [Related]
6. Aminoacyl-tRNA synthetases from yeast: generality of chemical proofreading in the prevention of misaminoacylation of tRNA. Igloi GL; von der Haar F; Cramer F Biochemistry; 1978 Aug; 17(17):3459-68. PubMed ID: 356880 [TBL] [Abstract][Full Text] [Related]
7. Alternative pathways for editing non-cognate amino acids by aminoacyl-tRNA synthetases. Jakubowski H; Fersht AR Nucleic Acids Res; 1981 Jul; 9(13):3105-17. PubMed ID: 7024910 [TBL] [Abstract][Full Text] [Related]
8. Characterization of a proteolipid complex of aminoacyl-tRNA synthetases and transfer RNA from rat liver. Saxholm HJ; Pitot HC Biochim Biophys Acta; 1979 May; 562(3):386-99. PubMed ID: 222323 [TBL] [Abstract][Full Text] [Related]
9. The aminoacylation of transfer ribonucleic acid. Recognition of methionine by Escherichia coli methionyl-transfer ribonucleic acid synthetase. Old JM; Jones DS Biochem J; 1977 Aug; 165(2):367-73. PubMed ID: 336037 [TBL] [Abstract][Full Text] [Related]
10. Hydrolytic action of aminoacyl-tRNA synthetases from baker's yeast: "chemical proofreading" preventing acylation of tRNA(I1e) with misactivated valine. von der Haar F; Cramer F Biochemistry; 1976 Sep; 15(18):4131-8. PubMed ID: 786367 [TBL] [Abstract][Full Text] [Related]
11. Tryptophanyl-tRNA synthetase is a major soluble protein species in bovine pancreas. Sallafranque ML; Garret M; Benedetto JP; Fournier M; Labouesse B; Bonnet J Biochim Biophys Acta; 1986 Jun; 882(2):192-9. PubMed ID: 3518805 [TBL] [Abstract][Full Text] [Related]
12. [tRNA and aminoacyl-tRNA synthetases from the liver of rabbits in experimental myocardial infarction]. Lukoshiavichius LIu; Rodovichius GA; Kovalenko MM; Pivoriunaĭte II; Prashkiavichius AK Vopr Med Khim; 1983; 29(4):65-9. PubMed ID: 6623997 [TBL] [Abstract][Full Text] [Related]
13. The effects of hyperphenylalaninaemia on the concentrations of aminoacyl-transfer ribonucleic acid in vivo. A mechanism for the inhibition of neural protein synthesis by phenylalanine. Hughes JV; Johnson TC Biochem J; 1977 Mar; 162(3):527-37. PubMed ID: 869903 [TBL] [Abstract][Full Text] [Related]
14. Proteolytic cleavage of methionyl transfer ribonucleic acid synthetase from Bacillus stearothermophilus: effects on activity and structure. Kalogerakos T; Dessen P; Fayat G; Blanquet S Biochemistry; 1980 Aug; 19(16):3712-23. PubMed ID: 6250575 [TBL] [Abstract][Full Text] [Related]
15. Kinetics of homologous and heterologous aminoacylation with yeast phenylalanyl transfer ribonucleic acid synthetase. Roe B; Sirover M; Dudock B Biochemistry; 1973 Oct; 12(21):4146-54. PubMed ID: 4583318 [No Abstract] [Full Text] [Related]
16. Position of aminoacylation of individual Escherichia coli and yeast tRNAs. Hecht SM; Chinualt AC Proc Natl Acad Sci U S A; 1976 Feb; 73(2):405-9. PubMed ID: 1108023 [TBL] [Abstract][Full Text] [Related]
17. The yeast protein Arc1p binds to tRNA and functions as a cofactor for the methionyl- and glutamyl-tRNA synthetases. Simos G; Segref A; Fasiolo F; Hellmuth K; Shevchenko A; Mann M; Hurt EC EMBO J; 1996 Oct; 15(19):5437-48. PubMed ID: 8895587 [TBL] [Abstract][Full Text] [Related]
18. Recognition of tRNAs by aminoacyl-tRNA synthetases: Escherichia coli tRNAMet and E. coli methionyl-tRNA synthetase. Schulman LH; Pelka H Fed Proc; 1984 Dec; 43(15):2977-80. PubMed ID: 6389181 [TBL] [Abstract][Full Text] [Related]
19. Aminoacylation of tRNA Trp from beef liver, yeast and E. coli by beef pancrease tryptophan-tRNA ligase. Stoichiometry of tRNATrp binding. Dorizzi M; Merault G; Fournier M; Labouesse J; Keith G; Dirheimer G; Buckingham RH Nucleic Acids Res; 1977 Jan; 4(1):31-42. PubMed ID: 17096 [TBL] [Abstract][Full Text] [Related]
20. Evidence for the absence of the terminal adenine nucleotide at the amino acid-acceptor end of transfer ribonucleic acid in non-lactating bovine mammary gland and its inhibitory effect on the aminoacylation of rat liver transfer ribonucleic acid. Herrington MD; Hawtrey AO Biochem J; 1970 Feb; 116(3):405-14. PubMed ID: 5435687 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]