These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 963017)

  • 1. The construction and testing of a simple, slow delivery-rapid quench apparatus.
    Ray WJ; Long JW
    Biochemistry; 1976 Sep; 15(18):3990-3. PubMed ID: 963017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A gas-flow cryostat for use in freeze-quench studies: design and application to discontinuous pre-steady-state spectral analyses.
    Moodie AD; Mitchell RH; Ingledew WJ
    Anal Biochem; 1990 Aug; 189(1):103-6. PubMed ID: 2177587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of substrate and transition-state analogue complexes in crystals of phosphoglucomutase after removing the crystallization salt.
    Ray WJ; Puvathingal JM; Liu YW
    Biochemistry; 1991 Jul; 30(28):6875-85. PubMed ID: 1829964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamics and mechanism of the PO3 transfer process in the phosphoglucomutase reaction.
    Ray WJ; Long JW
    Biochemistry; 1976 Sep; 15(18):3993-4006. PubMed ID: 963018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-dependent 31P saturation transfer in the phosphoglucomutase reaction. Characterization of the spin system for the Cd(II) enzyme and evaluation of rate constants for the transfer process.
    Post CB; Ray WJ; Gorenstein DG
    Biochemistry; 1989 Jan; 28(2):548-58. PubMed ID: 2523728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple rapid-mixing apparatus for reactions of 10(-3) to 1 sec duration.
    Zetterqvist O; Mårdh S; Sandström N
    Anal Biochem; 1976 Apr; 71(2):544-9. PubMed ID: 1275253
    [No Abstract]   [Full Text] [Related]  

  • 7. Comparison of rate constants for (PO3-) transfer by the Mg(II), Cd(II), and Li(I) forms of phosphoglucomutase.
    Ray WJ; Post CB; Puvathingal JM
    Biochemistry; 1989 Jan; 28(2):559-69. PubMed ID: 2523729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The thermodynamic and structural differences among the catalytically active complexes of phosphoglucomutase: metal ion effects.
    Ray WJ; Long JW
    Biochemistry; 1976 Sep; 15(18):4018-25. PubMed ID: 963020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A rapid freeze-quench setup for multi-frequency EPR spectroscopy of enzymatic reactions.
    Pievo R; Angerstein B; Fielding AJ; Koch C; Feussner I; Bennati M
    Chemphyschem; 2013 Dec; 14(18):4094-101. PubMed ID: 24323853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microsecond freeze-hyperquenching: development of a new ultrafast micro-mixing and sampling technology and application to enzyme catalysis.
    Cherepanov AV; De Vries S
    Biochim Biophys Acta; 2004 May; 1656(1):1-31. PubMed ID: 15136155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Internal thermodynamics of enzymes determined by equilibrium quench: values of Kint for enolase and creatine kinase.
    Burbaum JJ; Knowles JR
    Biochemistry; 1989 Nov; 28(24):9306-17. PubMed ID: 2611231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of action of rabbit liver phosphoglucomutase.
    Jamil H; Clarke JB
    Biochem J; 1985 Sep; 230(3):791-5. PubMed ID: 2933030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isomerization of the free enzyme versus induced fit: effects of steps involving induced fit that bypass enzyme isomerization on flux ratios and countertransport.
    Britton HG
    Biochem J; 1997 Jan; 321 ( Pt 1)(Pt 1):187-99. PubMed ID: 9003418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanism of phosphoglucomutase from Micrococcus lysodeikticus.
    Clarke JB; Britton HG
    Biochem J; 1974 Mar; 137(3):453-61. PubMed ID: 4472922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The identification of chemical intermediates in enzyme catalysis by the rapid quench-flow technique.
    Barman TE; Bellamy SR; Gutfreund H; Halford SE; Lionne C
    Cell Mol Life Sci; 2006 Nov; 63(22):2571-83. PubMed ID: 16952048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a vanadate-based transition-state-analogue complex of phosphoglucomutase by kinetic and equilibrium binding studies. Mechanistic implications.
    Ray WJ; Puvathingal JM
    Biochemistry; 1990 Mar; 29(11):2790-801. PubMed ID: 2140699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An analysis of the substrate-induced rate effect in the phosphoglucomutase system.
    Ray WJ; Long JW; Owens JD
    Biochemistry; 1976 Sep; 15(18):4006-17. PubMed ID: 963019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mechanism of the phosphoglucomutase reaction. Studies on rabbit muscle phosphoglucomutase with flux techniques.
    Britton HG; Clarke JB
    Biochem J; 1968 Nov; 110(2):161-80. PubMed ID: 5726186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A chemical quenching apparatus for studying rapid reactions.
    Froehlich JP; Sullivan JV; Berger RL
    Anal Biochem; 1976 Jun; 73(2):331-41. PubMed ID: 134650
    [No Abstract]   [Full Text] [Related]  

  • 20. Complexes of the enzyme phosphomannomutase/phosphoglucomutase with a slow substrate and an inhibitor.
    Regni C; Shackelford GS; Beamer LJ
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2006 Aug; 62(Pt 8):722-6. PubMed ID: 16880541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.