BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 963018)

  • 1. Thermodynamics and mechanism of the PO3 transfer process in the phosphoglucomutase reaction.
    Ray WJ; Long JW
    Biochemistry; 1976 Sep; 15(18):3993-4006. PubMed ID: 963018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of rate constants for (PO3-) transfer by the Mg(II), Cd(II), and Li(I) forms of phosphoglucomutase.
    Ray WJ; Post CB; Puvathingal JM
    Biochemistry; 1989 Jan; 28(2):559-69. PubMed ID: 2523729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An analysis of the substrate-induced rate effect in the phosphoglucomutase system.
    Ray WJ; Long JW; Owens JD
    Biochemistry; 1976 Sep; 15(18):4006-17. PubMed ID: 963019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The thermodynamic and structural differences among the catalytically active complexes of phosphoglucomutase: metal ion effects.
    Ray WJ; Long JW
    Biochemistry; 1976 Sep; 15(18):4018-25. PubMed ID: 963020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a vanadate-based transition-state-analogue complex of phosphoglucomutase by kinetic and equilibrium binding studies. Mechanistic implications.
    Ray WJ; Puvathingal JM
    Biochemistry; 1990 Mar; 29(11):2790-801. PubMed ID: 2140699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-dependent 31P saturation transfer in the phosphoglucomutase reaction. Characterization of the spin system for the Cd(II) enzyme and evaluation of rate constants for the transfer process.
    Post CB; Ray WJ; Gorenstein DG
    Biochemistry; 1989 Jan; 28(2):548-58. PubMed ID: 2523728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reaction of the isosteric methylenephosphonate analog of alpha-D-glucose 1-phosphate with phosphoglucomutase. Induced-fit specificity revisited.
    Ray WJ; Post CB; Puvathingal JM
    Biochemistry; 1993 Jan; 32(1):38-47. PubMed ID: 8418857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of substrate and transition-state analogue complexes in crystals of phosphoglucomutase after removing the crystallization salt.
    Ray WJ; Puvathingal JM; Liu YW
    Biochemistry; 1991 Jul; 30(28):6875-85. PubMed ID: 1829964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of vanadate-based transition-state-analogue complexes of phosphoglucomutase by spectral and NMR techniques.
    Ray WJ; Burgner JW; Post CB
    Biochemistry; 1990 Mar; 29(11):2770-8. PubMed ID: 2140697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of phosphoglucomutase by vanadate.
    Percival MD; Doherty K; Gresser MJ
    Biochemistry; 1990 Mar; 29(11):2764-9. PubMed ID: 2140696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural changes at the metal ion binding site during the phosphoglucomutase reaction.
    Ray WJ; Post CB; Liu Y; Rhyu GI
    Biochemistry; 1993 Jan; 32(1):48-57. PubMed ID: 8418859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzyme-bound intermediates in the conversion of glucose 1-phosphate to glucose 6-phosphate by phosphoglucomutase. Phosphorus NMR studies.
    Rhyu GI; Ray WJ; Markley JL
    Biochemistry; 1984 Jan; 23(2):252-60. PubMed ID: 6230103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The oxyvanadium constellation in transition-state-analogue complexes of phosphoglucomutase and ribonuclease. Structural deductions from electron-transfer spectra.
    Ray WJ; Post CB
    Biochemistry; 1990 Mar; 29(11):2779-89. PubMed ID: 2140698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanism of the phosphoglucomutase reaction. Studies on rabbit muscle phosphoglucomutase with flux techniques.
    Britton HG; Clarke JB
    Biochem J; 1968 Nov; 110(2):161-80. PubMed ID: 5726186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic studies on the ADP-ATP exchange reaction catalyzed by Na+, K+-dependent ATPase. Evidence for the K.S.T. mechanism with two enzyme-ATP complexes and two phosphorylated intermediates of high-energy type.
    Yamaguchi M; Tonomura Y
    J Biochem; 1977 Jan; 81(1):249-60. PubMed ID: 14933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphate binding energy and catalysis by small and large molecules.
    Morrow JR; Amyes TL; Richard JP
    Acc Chem Res; 2008 Apr; 41(4):539-48. PubMed ID: 18293941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic cycling in beta-phosphoglucomutase: a kinetic and structural analysis.
    Zhang G; Dai J; Wang L; Dunaway-Mariano D; Tremblay LW; Allen KN
    Biochemistry; 2005 Jul; 44(27):9404-16. PubMed ID: 15996095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The binding of lithium and of anionic metabolites to phosphoglucomutase.
    Ray WJ; Szymanki ES; Ng L
    Biochim Biophys Acta; 1978 Feb; 522(2):434-42. PubMed ID: 623770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. α-Fluorophosphonates reveal how a phosphomutase conserves transition state conformation over hexose recognition in its two-step reaction.
    Jin Y; Bhattasali D; Pellegrini E; Forget SM; Baxter NJ; Cliff MJ; Bowler MW; Jakeman DL; Blackburn GM; Waltho JP
    Proc Natl Acad Sci U S A; 2014 Aug; 111(34):12384-9. PubMed ID: 25104750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of vibrational frequencies of critical bonds in ground-state complexes and in a vanadate-based transition-state analog complex of muscle phosphoglucomutase. Mechanistic implications.
    Deng H; Ray WJ; Burgner JW; Callender R
    Biochemistry; 1993 Dec; 32(48):12984-92. PubMed ID: 8241152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.