These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 9630447)

  • 1. Computer simulation of inspiratory nasal airflow and inhaled gas uptake in a rhesus monkey.
    Kepler GM; Richardson RB; Morgan KT; Kimbell JS
    Toxicol Appl Pharmacol; 1998 May; 150(1):1-11. PubMed ID: 9630447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer simulation of inspiratory airflow in all regions of the F344 rat nasal passages.
    Kimbell JS; Godo MN; Gross EA; Joyner DR; Richardson RB; Morgan KT
    Toxicol Appl Pharmacol; 1997 Aug; 145(2):388-98. PubMed ID: 9266813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of computational fluid dynamics to regional dosimetry of inhaled chemicals in the upper respiratory tract of the rat.
    Kimbell JS; Gross EA; Joyner DR; Godo MN; Morgan KT
    Toxicol Appl Pharmacol; 1993 Aug; 121(2):253-63. PubMed ID: 8346542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nasal dosimetry of inhaled gases and particles: where do inhaled agents go in the nose?
    Kimbell JS
    Toxicol Pathol; 2006; 34(3):270-3. PubMed ID: 16698725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dosimetry of nasal uptake of water-soluble and reactive gases: a first study of interhuman variability.
    Garcia GJ; Schroeter JD; Segal RA; Stanek J; Foureman GL; Kimbell JS
    Inhal Toxicol; 2009 Jun; 21(7):607-18. PubMed ID: 19459775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies of inspiratory airflow patterns in the nasal passages of the F344 rat and rhesus monkey using nasal molds: relevance to formaldehyde toxicity.
    Morgan KT; Kimbell JS; Monticello TM; Patra AL; Fleishman A
    Toxicol Appl Pharmacol; 1991 Sep; 110(2):223-40. PubMed ID: 1891770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computational fluid dynamics approach to assess interhuman variability in hydrogen sulfide nasal dosimetry.
    Schroeter JD; Garcia GJ; Kimbell JS
    Inhal Toxicol; 2010 Mar; 22(4):277-86. PubMed ID: 20064104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro experiments and numerical simulations of airflow in realistic nasal airway geometry.
    Croce C; Fodil R; Durand M; Sbirlea-Apiou G; Caillibotte G; Papon JF; Blondeau JR; Coste A; Isabey D; Louis B
    Ann Biomed Eng; 2006 Jun; 34(6):997-1007. PubMed ID: 16783655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling inspiratory and expiratory steady-state velocity fields in the Sprague-Dawley rat nasal cavity.
    Yang GC; Scherer PW; Mozell MM
    Chem Senses; 2007 Mar; 32(3):215-23. PubMed ID: 17220519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A CFD-PBPK hybrid model for simulating gas and vapor uptake in the rat nose.
    Bush ML; Frederick CB; Kimbell JS; Ultman JS
    Toxicol Appl Pharmacol; 1998 May; 150(1):133-45. PubMed ID: 9630462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of anatomy on human nasal air flow and odorant transport patterns: implications for olfaction.
    Zhao K; Scherer PW; Hajiloo SA; Dalton P
    Chem Senses; 2004 Jun; 29(5):365-79. PubMed ID: 15201204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laminar airflow and nanoparticle or vapor deposition in a human nasal cavity model.
    Shi H; Kleinstreuer C; Zhang Z
    J Biomech Eng; 2006 Oct; 128(5):697-706. PubMed ID: 16995756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dosimetry modeling of inhaled formaldehyde: binning nasal flux predictions for quantitative risk assessment.
    Kimbell JS; Overton JH; Subramaniam RP; Schlosser PM; Morgan KT; Conolly RB; Miller FJ
    Toxicol Sci; 2001 Nov; 64(1):111-21. PubMed ID: 11606807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical simulations for detailed airflow dynamics in a human nasal cavity.
    Wen J; Inthavong K; Tu J; Wang S
    Respir Physiol Neurobiol; 2008 Apr; 161(2):125-35. PubMed ID: 18378196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of computational fluid dynamics models for dosimetry of inhaled gases in the nasal passages.
    Kimbell JS; Subramaniam RP
    Inhal Toxicol; 2001 May; 13(5):325-34. PubMed ID: 11295865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational fluid dynamics simulations of inhaled nano- and microparticle deposition in the rhesus monkey nasal passages.
    Schroeter JD; Asgharian B; Price OT; McClellan GE
    Inhal Toxicol; 2013 Oct; 25(12):691-701. PubMed ID: 24102469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nasal airflow diagnosis--comparison of experimental studies and computer simulations.
    Müller-Wittig W; Mlynsji G; Weinhold I; Bockholt U; Voss G
    Stud Health Technol Inform; 2002; 85():311-7. PubMed ID: 15458107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An overview of numerical modelling of nasal airflow.
    Bailie N; Hanna B; Watterson J; Gallagher G
    Rhinology; 2006 Mar; 44(1):53-7. PubMed ID: 16550951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visualization of flow resistance in physiological nasal respiration: analysis of velocity and vorticities using numerical simulation.
    Ishikawa S; Nakayama T; Watanabe M; Matsuzawa T
    Arch Otolaryngol Head Neck Surg; 2006 Nov; 132(11):1203-9. PubMed ID: 17116815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Numerical simulation study on effects of ambient temperature on airflow in the nasal cavity].
    Xiong GX; Li JF; Lei WB; Zhou XH; Zhan JM; Xu G
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2011 Nov; 46(11):928-32. PubMed ID: 22335980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.