These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
303 related articles for article (PubMed ID: 9630954)
1. Pathway engineering for the production of aromatic compounds in Escherichia coli. Flores N; Xiao J; Berry A; Bolivar F; Valle F Nat Biotechnol; 1996 May; 14(5):620-3. PubMed ID: 9630954 [TBL] [Abstract][Full Text] [Related]
2. [Co-expressions of phosphoenolpyruvate synthetase A (ppsA) and transketolase A (tktA) genes of Escherichia coli]. Li YH; Liu Y; Wang SC; Tong ZY; Xu QS Sheng Wu Gong Cheng Xue Bao; 2003 May; 19(3):301-6. PubMed ID: 15969011 [TBL] [Abstract][Full Text] [Related]
3. Fed-batch fermentor synthesis of 3-dehydroshikimic acid using recombinant Escherichia coli. Li K; Mikola MR; Draths KM; Worden RM; Frost JW Biotechnol Bioeng; 1999 Jul; 64(1):61-73. PubMed ID: 10397840 [TBL] [Abstract][Full Text] [Related]
4. Phosphoenolpyruvate availability and the biosynthesis of shikimic acid. Chandran SS; Yi J; Draths KM; von Daeniken R; Weber W; Frost JW Biotechnol Prog; 2003; 19(3):808-14. PubMed ID: 12790643 [TBL] [Abstract][Full Text] [Related]
5. The high-resolution structure of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase reveals a twist in the plane of bound phosphoenolpyruvate. Shumilin IA; Bauerle R; Kretsinger RH Biochemistry; 2003 Apr; 42(13):3766-76. PubMed ID: 12667068 [TBL] [Abstract][Full Text] [Related]
6. Crystal structure of the reaction complex of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Thermotoga maritima refines the catalytic mechanism and indicates a new mechanism of allosteric regulation. Shumilin IA; Bauerle R; Wu J; Woodard RW; Kretsinger RH J Mol Biol; 2004 Aug; 341(2):455-66. PubMed ID: 15276836 [TBL] [Abstract][Full Text] [Related]
7. Directed evolution of 2-keto-3-deoxy-6-phosphogalactonate aldolase to replace 3-deoxy-D-arabino-heptulosonic acid 7-phosphate synthase. Ran N; Frost JW J Am Chem Soc; 2007 May; 129(19):6130-9. PubMed ID: 17451239 [TBL] [Abstract][Full Text] [Related]
8. The use of (E)- and (Z)-phosphoenol-3-fluoropyruvate as mechanistic probes reveals significant differences between the active sites of KDO8P and DAHP synthases. Furdui CM; Sau AK; Yaniv O; Belakhov V; Woodard RW; Baasov T; Anderson KS Biochemistry; 2005 May; 44(19):7326-35. PubMed ID: 15882071 [TBL] [Abstract][Full Text] [Related]
9. Metabolic engineering and control analysis for production of aromatics: Role of transaldolase. Lu JL; Liao JC Biotechnol Bioeng; 1997 Jan; 53(2):132-8. PubMed ID: 18633957 [TBL] [Abstract][Full Text] [Related]
10. Pathway engineering for production of aromatics in Escherichia coli: Confirmation of stoichiometric analysis by independent modulation of AroG, TktA, and Pps activities. Patnaik R; Spitzer RG; Liao JC Biotechnol Bioeng; 1995 May; 46(4):361-70. PubMed ID: 18623323 [TBL] [Abstract][Full Text] [Related]
11. Steady-state kinetics and inhibitor binding of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (tryptophan sensitive) from Escherichia coli. Akowski JP; Bauerle R Biochemistry; 1997 Dec; 36(50):15817-22. PubMed ID: 9398312 [TBL] [Abstract][Full Text] [Related]
12. Linear Free Energy Relationship Analysis of Transition State Mimicry by 3-Deoxy-d-arabino-heptulosonate-7-phosphate (DAHP) Oxime, a DAHP Synthase Inhibitor and Phosphate Mimic. Balachandran N; To F; Berti PJ Biochemistry; 2017 Jan; 56(4):592-601. PubMed ID: 28045507 [TBL] [Abstract][Full Text] [Related]
13. Metabolic engineering of Escherichia coli for improving L-3,4-dihydroxyphenylalanine (L-DOPA) synthesis from glucose. Muñoz AJ; Hernández-Chávez G; de Anda R; Martínez A; Bolívar F; Gosset G J Ind Microbiol Biotechnol; 2011 Nov; 38(11):1845-52. PubMed ID: 21512819 [TBL] [Abstract][Full Text] [Related]
14. Altered glucose transport and shikimate pathway product yields in E. coli. Yi J; Draths KM; Li K; Frost JW Biotechnol Prog; 2003; 19(5):1450-9. PubMed ID: 14524706 [TBL] [Abstract][Full Text] [Related]
15. Determination of 3-deoxy-D-arabino-heptulosonate 7-phosphate productivity and yield from glucose in Escherichia coli devoid of the glucose phosphotransferase transport system. Báez JL; Bolívar F; Gosset G Biotechnol Bioeng; 2001 Jun; 73(6):530-5. PubMed ID: 11344458 [TBL] [Abstract][Full Text] [Related]
16. Substrate and metal complexes of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Saccharomyces cerevisiae provide new insights into the catalytic mechanism. König V; Pfeil A; Braus GH; Schneider TR J Mol Biol; 2004 Mar; 337(3):675-90. PubMed ID: 15019786 [TBL] [Abstract][Full Text] [Related]
18. Growth recovery on glucose under aerobic conditions of an Escherichia coli strain carrying a phosphoenolpyruvate:carbohydrate phosphotransferase system deletion by inactivating arcA and overexpressing the genes coding for glucokinase and galactose permease. Flores N; Leal L; Sigala JC; de Anda R; Escalante A; Martínez A; Ramírez OT; Gosset G; Bolivar F J Mol Microbiol Biotechnol; 2007; 13(1-3):105-16. PubMed ID: 17693718 [TBL] [Abstract][Full Text] [Related]
19. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation. Matsuoka Y; Shimizu K J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830 [TBL] [Abstract][Full Text] [Related]
20. Disruption of a global regulatory gene to enhance central carbon flux into phenylalanine biosynthesis in Escherichia coli. Tatarko M; Romeo T Curr Microbiol; 2001 Jul; 43(1):26-32. PubMed ID: 11375660 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]