These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 963100)

  • 1. [Spectroscopic study of the interaction of cationic dyes with mitochondria].
    Chizhova EB; Ermakova TV
    Biofizika; 1976; 21(3):486-90. PubMed ID: 963100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonance Raman investigations of cytochrome c conformational change upon interaction with the membranes of intact and Ca2+-exposed mitochondria.
    Berezhna S; Wohlrab H; Champion PM
    Biochemistry; 2003 May; 42(20):6149-58. PubMed ID: 12755617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions of bacterial polysaccharides with cationic dyes: physicochemical studies.
    Dasgupta S; Nath RK; Biswas S; Mitra A; Panda AK
    Indian J Biochem Biophys; 2009 Apr; 46(2):192-7. PubMed ID: 19517998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence of acridinic dyes in anionic surfactant solution.
    Pereira RV; Gehlen MH
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Oct; 61(13-14):2926-32. PubMed ID: 16165033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Absorption and fluorescence studies on interaction between cationic dyes and Klebsiella K7 capsular polysaccharide.
    Mitra A; Chakraborty AK
    Indian J Biochem Biophys; 1992 Jun; 29(3):291-5. PubMed ID: 1512016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectrophotometric and spectrofluorometric studies on interaction of cationic dyes with bacterial capsular polysaccharide.
    Mitra A; Chakraborty AK
    Indian J Biochem Biophys; 1998 Aug; 35(4):241-6. PubMed ID: 9854905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Hydrophobic acridine dyes for fluorescence staining of mitochondria in living cells. 1. Thermodynamic and spectroscopic properties of 10-n-alkylacridine orange chlorides].
    Septinus M; Seiffert W; Zimmermann HW
    Histochemistry; 1983; 79(3):443-56. PubMed ID: 6197394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Archaebacterial lipid membranes as models to study the interaction of 10-N-nonyl acridine orange with phospholipids.
    Lobasso S; Saponetti MS; Polidoro F; Lopalco P; Urbanija J; Kralj-Iglic V; Corcelli A
    Chem Phys Lipids; 2009 Jan; 157(1):12-20. PubMed ID: 18938147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on the interaction of aromatic dyes with nucleic acids by means of UV, CD and NMR spectroscopies.
    Yashima E; Tajima T; Suehiro N; Akashi M; Miyauchi N
    Nucleic Acids Symp Ser; 1990; (22):101-2. PubMed ID: 1714567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of basic dyes, including dyes intercalating with DNA, on the adenosine triphosphatase activity of mitochondria].
    Beliaeva TN; Faddeeva MD; Braun AD
    Tsitologiia; 1974; 16(6):741-6. PubMed ID: 4276068
    [No Abstract]   [Full Text] [Related]  

  • 11. Studies on adsorption of mono- and multi-chromophoric hemicyanine dyes on silver nanoparticles by surface-enhanced resonance Raman and theoretical calculations.
    Biswas N; Thomas S; Kapoor S; Mishra A; Wategaonkar S; Mukherjee T
    J Chem Phys; 2008 Nov; 129(18):184702. PubMed ID: 19045418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of N-alkyl acridine orange dyes as fluorescence probes for the determination of cardiolipin.
    Kaewsuya P; Miller JD; Danielson ND; Sanjeevi J; James PF
    Anal Chim Acta; 2008 Sep; 626(2):111-8. PubMed ID: 18790112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopic characterization of phenazinium dye aggregates in water and acetonitrile media: effect of methyl substitution on the aggregation phenomenon.
    Sarkar D; Das P; Girigoswami A; Chattopadhyay N
    J Phys Chem A; 2008 Oct; 112(40):9684-91. PubMed ID: 18785692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial toxicity of cationic photosensitizers for photochemotherapy.
    Modica-Napolitano JS; Joyal JL; Ara G; Oseroff AR; Aprille JR
    Cancer Res; 1990 Dec; 50(24):7876-81. PubMed ID: 2174736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding interaction of cationic phenazinium dyes with calf thymus DNA: a comparative study.
    Sarkar D; Das P; Basak S; Chattopadhyay N
    J Phys Chem B; 2008 Jul; 112(30):9243-9. PubMed ID: 18610959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uptake of cationic dyes from aqueous solution by biosorption onto granular kohlrabi peel.
    Gong R; Zhang X; Liu H; Sun Y; Liu B
    Bioresour Technol; 2007 Apr; 98(6):1319-23. PubMed ID: 16790346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photophysical studies of some dyes in aqueous solution of triton X-100.
    Bhowmik BB; Ganguly P
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Dec; 62(4-5):808-13. PubMed ID: 15893955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induced circular dichroism of acridine orange bound to double-stranded RNA and transfer RNA.
    Zama M; Ichimura S
    Biopolymers; 1976 Sep; 15(9):1693-9. PubMed ID: 963258
    [No Abstract]   [Full Text] [Related]  

  • 19. On the various types of circular dichroism induced on acridine orange bound to poly(S-carboxymethyl-L-cysteine).
    Imae T; Ikeda S
    Biopolymers; 1975 Jun; 14(6):1213-21. PubMed ID: 240463
    [No Abstract]   [Full Text] [Related]  

  • 20. Electric birefringence and dichroism of acridine orange and methylene blue complexes with polynucleotides.
    Bradley DF; Stellwagen NC; O'Konski CT; Paulson CM
    Biopolymers; 1972 Mar; 11(3):645-52. PubMed ID: 5016121
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.