These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 9631092)
1. The similarities of bar and pat gene products make them equally applicable for plant engineers. Wehrmann A; Van Vliet A; Opsomer C; Botterman J; Schulz A Nat Biotechnol; 1996 Oct; 14(10):1274-8. PubMed ID: 9631092 [TBL] [Abstract][Full Text] [Related]
2. Safety evaluation of the phosphinothricin acetyltransferase proteins encoded by the pat and bar sequences that confer tolerance to glufosinate-ammonium herbicide in transgenic plants. Hérouet C; Esdaile DJ; Mallyon BA; Debruyne E; Schulz A; Currier T; Hendrickx K; van der Klis RJ; Rouan D Regul Toxicol Pharmacol; 2005 Mar; 41(2):134-49. PubMed ID: 15698537 [TBL] [Abstract][Full Text] [Related]
3. [Creation of transgenic plants Nicotiana tabacum and Solanum tuberosum, resistant to the herbicide phosphinothricin]. Padegimas L; Shul'ga OA; Skriabin KG Mol Biol (Mosk); 1994; 28(2):437-43. PubMed ID: 8183276 [TBL] [Abstract][Full Text] [Related]
4. Application of immunoaffinity column as cleanup tool for an enzyme linked immunosorbent assay of phosphinothricin-N-acetyltransferase detection in genetically modified maize and rape. Xu W; Huang K; Zhao H; Luo Y J Agric Food Chem; 2005 Jun; 53(11):4315-21. PubMed ID: 15913288 [TBL] [Abstract][Full Text] [Related]
5. l-Methionine sulfoximine, but not phosphinothricin, is a substrate for an acetyltransferase (gene PA4866) from Pseudomonas aeruginosa: structural and functional studies. Davies AM; Tata R; Beavil RL; Sutton BJ; Brown PR Biochemistry; 2007 Feb; 46(7):1829-39. PubMed ID: 17253769 [TBL] [Abstract][Full Text] [Related]
6. [Optimization of the protocol for constructing transgenic plants of the white cabbage brassica oleracea var. capitata]. Gribova TN; Kamionskaia AM; Skriabin KG Prikl Biokhim Mikrobiol; 2006; 42(5):593-8. PubMed ID: 17066961 [TBL] [Abstract][Full Text] [Related]
7. Transformation of Lotus japonicus using the herbicide resistance bar gene as a selectable marker. Lohar DP; Schuller K; Buzas DM; Gresshoff PM; Stiller J J Exp Bot; 2001 Aug; 52(361):1697-702. PubMed ID: 11479335 [TBL] [Abstract][Full Text] [Related]
8. Viability and bar expression are negatively correlated in Oregon Wolfe Barley Dominant hybrids. Bregitzer P; Cooper LD; Hayes PM; Lemaux PG; Singh J; Sturbaum AK Plant Biotechnol J; 2007 May; 5(3):381-8. PubMed ID: 17359497 [TBL] [Abstract][Full Text] [Related]
9. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials. EFSA GMO Panel Working Group on Animal Feeding Trials Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408 [TBL] [Abstract][Full Text] [Related]
10. Quantitative analysis of phosphinothricin-N-acetyltransferase in genetically modified herbicide tolerant pepper by an enzyme-linked immunosorbent assay. Shim YY; Shin WS; Moon GS; Kim KH J Microbiol Biotechnol; 2007 Apr; 17(4):681-4. PubMed ID: 18051284 [TBL] [Abstract][Full Text] [Related]
11. Expression of phosphinothricin N-acetyltransferase in Escherichia coli and Pseudomonas fluorescens: influence of mRNA secondary structure, host, and other physiological conditions. Madduri KM; Snodderley EM Protein Expr Purif; 2007 Oct; 55(2):352-60. PubMed ID: 17574436 [TBL] [Abstract][Full Text] [Related]
12. [Stable expression of promoterless bar gene in transgenic rape plants]. Sakhno LA; Gocheva EA; Komarnitskiĭ IK; Kuchuk NV Tsitol Genet; 2008; 42(1):21-8. PubMed ID: 18411755 [TBL] [Abstract][Full Text] [Related]
13. Non-specific activities of the major herbicide-resistance gene BAR. Christ B; Hochstrasser R; Guyer L; Francisco R; Aubry S; Hörtensteiner S; Weng JK Nat Plants; 2017 Dec; 3(12):937-945. PubMed ID: 29180815 [TBL] [Abstract][Full Text] [Related]
14. Nucleotide sequence of the phosphinothricin N-acetyltransferase gene from Streptomyces viridochromogenes Tü494 and its expression in Nicotiana tabacum. Wohlleben W; Arnold W; Broer I; Hillemann D; Strauch E; Pühler A Gene; 1988 Oct; 70(1):25-37. PubMed ID: 3240868 [TBL] [Abstract][Full Text] [Related]
15. Characterization of phosphinothricin acetyltransferase and C-terminal enzymatically active fusion proteins. Botterman J; Gosselé V; Thoen C; Lauwereys M Gene; 1991 Jun; 102(1):33-7. PubMed ID: 1864506 [TBL] [Abstract][Full Text] [Related]
16. Genetic transformation of cork oak (Quercus suber L.) for herbicide resistance. Alvarez R; Alvarez JM; Humara JM; Revilla A; Ordás RJ Biotechnol Lett; 2009 Sep; 31(9):1477-83. PubMed ID: 19543858 [TBL] [Abstract][Full Text] [Related]
17. The lac operon galactoside acetyltransferase. Roderick SL C R Biol; 2005 Jun; 328(6):568-75. PubMed ID: 15950163 [TBL] [Abstract][Full Text] [Related]
18. The structure and specificity of Escherichia coli maltose acetyltransferase give new insight into the LacA family of acyltransferases. Lo Leggio L; Dal Degan F; Poulsen P; Andersen SM; Larsen S Biochemistry; 2003 May; 42(18):5225-35. PubMed ID: 12731863 [TBL] [Abstract][Full Text] [Related]
19. Expression of PAT and NPT II proteins during the developmental stages of a genetically modified pepper developed in Korea. Kim HJ; Lee SM; Kim JK; Ryu TH; Suh SC; Cho HS J Agric Food Chem; 2010 Oct; 58(20):10906-10. PubMed ID: 20873787 [TBL] [Abstract][Full Text] [Related]
20. Hereditary behavior of bar gene cassette is complex in rice mediated by particle bombardment. Zhao Y; Qian Q; Wang H; Huang D J Genet Genomics; 2007 Sep; 34(9):824-35. PubMed ID: 17884692 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]