These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 9631187)

  • 21. Identification of tissue-specific DNA-protein binding sites by means of two-dimensional electrophoretic mobility shift assay display.
    Chernov IP; Timchenko KA; Akopov SB; Nikolaev LG; Sverdlov ED
    Anal Biochem; 2007 May; 364(1):60-6. PubMed ID: 17359930
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interactions of DNA and Proteins: Electrophoretic Mobility Shift Assay in Asthma.
    García-Solaesa V; Sanz-Lozano CS
    Methods Mol Biol; 2016; 1434():91-105. PubMed ID: 27300533
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thrombin activates transcription factors sp1, NF-kappaB, and CREB: importance of the use of phosphatase inhibitors during nuclear protein extraction for the assessment of transcription factor DNA-binding activities.
    Edmead C; Kanthou C; Benzakour O
    Anal Biochem; 1999 Nov; 275(2):180-6. PubMed ID: 10552902
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Shift-Western Blotting: Separate Analysis of Protein and DNA from Protein-DNA Complexes.
    Harbers M
    Methods Mol Biol; 2015; 1312():355-73. PubMed ID: 26044017
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detection of protein phosphatase activities in sodium dodecyl sulfate-polyacrylamide gel using peptide substrates.
    Kameshita I; Ishida A; Okuno S; Fujisawa H
    Anal Biochem; 1997 Feb; 245(2):149-53. PubMed ID: 9056202
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Examination of DNA-binding activity of neuronal transcription factors by electrophoretical mobility shift assay.
    Kako K; Wakamatsu H; Hamada T; Banasik M; Ohata K; Niki-Kuroiwa T; Suzuki S; Takeuchi J; Ishida N
    Brain Res Brain Res Protoc; 1998 Jun; 2(4):243-9. PubMed ID: 9630654
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An inhibitory factor in rat thymus which interferes with binding of cytosol Ah receptor to xenobiotic responsive element.
    Kurl RN
    Biochem Mol Biol Int; 1994 Aug; 34(1):55-66. PubMed ID: 7849625
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Use of modified agarose gel electrophoresis to resolve protein-DNA complexes for electrophoretic mobility shift assay.
    Chandrasekhar S; Souba WW; Abcouwer SF
    Biotechniques; 1998 Feb; 24(2):216-8. PubMed ID: 9494717
    [No Abstract]   [Full Text] [Related]  

  • 29. Identification and characterization of an estrogen-responsive element binding protein repressed by estradiol.
    Gray WG; Gorski J
    Biochemistry; 1996 Sep; 35(36):11685-92. PubMed ID: 8794749
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analyzing the nuclear complexes of Notch signaling by electrophoretic mobility shift assay.
    Arnett KL; Blacklow SC
    Methods Mol Biol; 2014; 1187():231-45. PubMed ID: 25053494
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation and control of AP-1 binding activity in embryotoxicity.
    Ozolinš TR
    Methods Mol Biol; 2012; 889():291-303. PubMed ID: 22669672
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DNA binding of hypothalamic nuclear proteins on estrogen response element and preproenkephalin promoter: modification by estrogen.
    Zhu YS; Pfaff DW
    Neuroendocrinology; 1995 Nov; 62(5):454-66. PubMed ID: 8559277
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro analysis of DNA-protein interactions by proximity ligation.
    Gustafsdottir SM; Schlingemann J; Rada-Iglesias A; Schallmeiner E; Kamali-Moghaddam M; Wadelius C; Landegren U
    Proc Natl Acad Sci U S A; 2007 Feb; 104(9):3067-72. PubMed ID: 17360610
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design of a fluorescent electrophoretic mobility shift assay improved for the quantitative and multiple analysis of protein-DNA complexes.
    Onizuka T; Endo S; Hirano M; Kanai S; Akiyama H
    Biosci Biotechnol Biochem; 2002 Dec; 66(12):2732-4. PubMed ID: 12596878
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Studying forkhead box protein A1-DNA interaction and ligand inhibition using gold nanoparticles, electrophoretic mobility shift assay, and fluorescence anisotropy.
    Aung KM; New SY; Hong S; Sutarlie L; Lim MG; Tan SK; Cheung E; Su X
    Anal Biochem; 2014 Mar; 448():95-104. PubMed ID: 24291642
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A sensitive two-color electrophoretic mobility shift assay for detecting both nucleic acids and protein in gels.
    Jing D; Agnew J; Patton WF; Hendrickson J; Beechem JM
    Proteomics; 2003 Jul; 3(7):1172-80. PubMed ID: 12872218
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of Proteins Interacting with Single Nucleotide Polymorphisms (SNPs) by DNA Pull-Down Assay.
    Singh B; Nath SK
    Methods Mol Biol; 2019; 1855():355-362. PubMed ID: 30426431
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of cis-regulatory elements and transcription factor binding: gel mobility shift assay.
    Lin JJ; Grosskurth SE; Harlan SM; Gustafson-Wagner EA; Wang Q
    Methods Mol Biol; 2007; 366():183-201. PubMed ID: 17568125
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrophoretic mobility shift assay analysis of NF-κB DNA binding.
    Ramaswami S; Hayden MS
    Methods Mol Biol; 2015; 1280():3-13. PubMed ID: 25736740
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multimerization of restriction fragments by magnesium-mediated stable base pairing between overhangs: a cause of electrophoretic mobility shift.
    Tagashira H; Morita M; Ohyama T
    Biochemistry; 2002 Oct; 41(40):12217-23. PubMed ID: 12356324
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.