These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 963167)

  • 21. Surface examination of electrodes of removed implants.
    Rozman J; Pihlar B; Strojnik P
    Scand J Rehabil Med Suppl; 1988; 17():99-103. PubMed ID: 3261042
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [FeFe]-hydrogenase-catalyzed H2 production in a photoelectrochemical biofuel cell.
    Hambourger M; Gervaldo M; Svedruzic D; King PW; Gust D; Ghirardi M; Moore AL; Moore TA
    J Am Chem Soc; 2008 Feb; 130(6):2015-22. PubMed ID: 18205358
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Continuous power generation and microbial community structure of the anode biofilms in a three-stage microbial fuel cell system.
    Chung K; Okabe S
    Appl Microbiol Biotechnol; 2009 Jul; 83(5):965-77. PubMed ID: 19404637
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simultaneous wastewater treatment and biological electricity generation.
    Logan BE
    Water Sci Technol; 2005; 52(1-2):31-7. PubMed ID: 16180406
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimization of a Pt-free cathode suitable for practical applications of microbial fuel cells.
    Lefebvre O; Ooi WK; Tang Z; Abdullah-Al-Mamun M; Chua DH; Ng HY
    Bioresour Technol; 2009 Oct; 100(20):4907-10. PubMed ID: 19464880
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A biofuel cell with electrochemically switchable and tunable power output.
    Katz E; Willner I
    J Am Chem Soc; 2003 Jun; 125(22):6803-13. PubMed ID: 12769592
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells.
    Oh SE; Logan BE
    Appl Microbiol Biotechnol; 2006 Mar; 70(2):162-9. PubMed ID: 16167143
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biological chromium(VI) reduction in the cathode of a microbial fuel cell.
    Tandukar M; Huber SJ; Onodera T; Pavlostathis SG
    Environ Sci Technol; 2009 Nov; 43(21):8159-65. PubMed ID: 19924938
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioelectrical energy sources for cardiac pacemakers.
    Cassel J; Satinsky VP; Salkind A
    J Assoc Adv Med Instrum; 1972; 6(5):329-34. PubMed ID: 5079984
    [No Abstract]   [Full Text] [Related]  

  • 30. Hybrid biological power cells for cardiac pacemakers--materials evaluation.
    Cooper JB; Hahn AW
    IEEE Trans Biomed Eng; 1973 Sep; 20(5):336-45. PubMed ID: 4727419
    [No Abstract]   [Full Text] [Related]  

  • 31. [Interference of pacemaker stimulation due to battery rotation (pacemaker-twiddler syndrome)].
    Schulten HK; du Mesnil de Rochemont W; Jochem W; Baldus O; Grosser KD; Behrenbeck DW
    Med Welt; 1975 Aug; 26(31-32):1406-7. PubMed ID: 1165711
    [No Abstract]   [Full Text] [Related]  

  • 32. [Tissue reaction with platinum-iridium insulated electrodes (author's transl)].
    Theopold HM; Zollner M; Schorn K; Spahmann J; Scherer H
    Laryngol Rhinol Otol (Stuttg); 1981 Oct; 60(10):534-7. PubMed ID: 7047950
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mitigation of the effect of catholyte contamination in microbial fuel cells using a wicking air cathode.
    Sund CJ; Wong MS; Sumner JJ
    Biosens Bioelectron; 2009 Jun; 24(10):3144-7. PubMed ID: 19359159
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A hybrid biofuel cell based on electrooxidation of glucose using ultra-small silicon nanoparticles.
    Choi Y; Wang G; Nayfeh MH; Yau ST
    Biosens Bioelectron; 2009 Jun; 24(10):3103-7. PubMed ID: 19423331
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electricity production by an overflow-type wetted-wall microbial fuel cell.
    Li Z; Zhang X; Zeng Y; Lei L
    Bioresour Technol; 2009 May; 100(9):2551-5. PubMed ID: 19157869
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of the potential of various aquatic eco-systems in harnessing bioelectricity through benthic fuel cell: effect of electrode assembly and water characteristics.
    Venkata Mohan S; Srikanth S; Veer Raghuvulu S; Mohanakrishna G; Kiran Kumar A; Sarma PN
    Bioresour Technol; 2009 Apr; 100(7):2240-6. PubMed ID: 19071015
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of ammonia loss mechanisms in microbial fuel cells treating animal wastewater.
    Kim JR; Zuo Y; Regan JM; Logan BE
    Biotechnol Bioeng; 2008 Apr; 99(5):1120-7. PubMed ID: 17972328
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electricity generation using membrane and salt bridge microbial fuel cells.
    Min B; Cheng S; Logan BE
    Water Res; 2005 May; 39(9):1675-86. PubMed ID: 15899266
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Water electrolysis: an excellent approach for the removal of water from ionic liquids.
    Islam MM; Okajima T; Kojima S; Ohsaka T
    Chem Commun (Camb); 2008 Nov; (42):5330-2. PubMed ID: 18985200
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Checking graphite and stainless anodes with an experimental model of marine microbial fuel cell.
    Dumas C; Mollica A; FĂ©ron D; Basseguy R; Etcheverry L; Bergel A
    Bioresour Technol; 2008 Dec; 99(18):8887-94. PubMed ID: 18558485
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.