These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 963203)
1. Computer simulation of flagellar movement. IV. Properties of an oscillatory two-state cross-bridge model. Brokaw CJ Biophys J; 1976 Sep; 16(9):1029-41. PubMed ID: 963203 [TBL] [Abstract][Full Text] [Related]
2. Computer simulation of flagellar movement. V. oscillation of cross-bridge models with an ATP-concentration-dependent rate function. Brokaw CJ; Rintala D J Mechanochem Cell Motil; 1977 Sep; 4(3):205-32. PubMed ID: 753901 [TBL] [Abstract][Full Text] [Related]
3. Computer simulation of flagellar movement. III. Models incorporating cross-bridge kinetics. Brokaw CJ; Rintala DR J Mechanochem Cell Motil; 1975; 3(2):77-86. PubMed ID: 1214108 [TBL] [Abstract][Full Text] [Related]
4. A model of flagellar movement based on cooperative dynamics of dynein-tubulin cross-bridges. Murase M; Shimizu H J Theor Biol; 1986 Apr; 119(4):409-33. PubMed ID: 2943943 [TBL] [Abstract][Full Text] [Related]
5. Molecular mechanism for oscillation in flagella and muscle. Brokaw CJ Proc Natl Acad Sci U S A; 1975 Aug; 72(8):3102-6. PubMed ID: 1059095 [TBL] [Abstract][Full Text] [Related]
6. Computer simulation of flagellar movement. I. Demonstration of stable bend propagation and bend initiation by the sliding filament model. Brokaw CJ Biophys J; 1972 May; 12(5):564-86. PubMed ID: 5030565 [TBL] [Abstract][Full Text] [Related]
7. Computer simulation of flagellar movement. VI. Simple curvature-controlled models are incompletely specified. Brokaw CJ Biophys J; 1985 Oct; 48(4):633-42. PubMed ID: 3840393 [TBL] [Abstract][Full Text] [Related]
8. Models for oscillation and bend propagation by flagella. Brokaw CJ Symp Soc Exp Biol; 1982; 35():313-38. PubMed ID: 6223398 [TBL] [Abstract][Full Text] [Related]
9. Computer simulation of movement-generating cross-bridges. Brokaw CJ Biophys J; 1976 Sep; 16(9):1013-27. PubMed ID: 963202 [TBL] [Abstract][Full Text] [Related]
10. Computer simulation of flagellar movement IX. Oscillation and symmetry breaking in a model for short flagella and nodal cilia. Brokaw CJ Cell Motil Cytoskeleton; 2005 Jan; 60(1):35-47. PubMed ID: 15573415 [TBL] [Abstract][Full Text] [Related]
11. Bend propagation in flagella. II. Incorporation of dynein cross-bridge kinetics into the equations of motion. Hines M; Blum JJ Biophys J; 1979 Mar; 25(3):421-41. PubMed ID: 162447 [TBL] [Abstract][Full Text] [Related]
12. Distributed representations for actin-myosin interaction in the oscillatory contraction of muscle. Thorson J; White DC Biophys J; 1969 Mar; 9(3):360-90. PubMed ID: 5780714 [TBL] [Abstract][Full Text] [Related]
13. Computer simulation of flagellar movement X: doublet pair splitting and bend propagation modeled using stochastic dynein kinetics. Brokaw CJ Cytoskeleton (Hoboken); 2014 Apr; 71(4):273-84. PubMed ID: 24574072 [TBL] [Abstract][Full Text] [Related]
14. Flagellar hydrodynamics. A comparison between resistive-force theory and slender-body theory. Johnson RE; Brokaw CJ Biophys J; 1979 Jan; 25(1):113-27. PubMed ID: 262381 [TBL] [Abstract][Full Text] [Related]
15. Model of the bacterial flagellar motor: response to varying viscous load. Adam G J Mechanochem Cell Motil; 1977 Dec; 4(4):235-53. PubMed ID: 112211 [TBL] [Abstract][Full Text] [Related]
16. Bend propagation in flagella. I. Derivation of equations of motion and their simulation. Hines M; Blum JJ Biophys J; 1978 Jul; 23(1):41-57. PubMed ID: 667306 [TBL] [Abstract][Full Text] [Related]
17. Torque and rotation rate of the bacterial flagellar motor. Läuger P Biophys J; 1988 Jan; 53(1):53-65. PubMed ID: 3342270 [TBL] [Abstract][Full Text] [Related]
18. Active phase and amplitude fluctuations of flagellar beating. Ma R; Klindt GS; Riedel-Kruse IH; Jülicher F; Friedrich BM Phys Rev Lett; 2014 Jul; 113(4):048101. PubMed ID: 25105656 [TBL] [Abstract][Full Text] [Related]
20. A model of flagellar and ciliary functioning which uses the forces transverse to the axoneme as the regulator of dynein activation. Lindemann CB Cell Motil Cytoskeleton; 1994; 29(2):141-54. PubMed ID: 7820864 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]