These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 963203)
21. Cross-bridge behavior in a sliding filament model for flagella. Brokaw CJ Soc Gen Physiol Ser; 1975; 30():165-79. PubMed ID: 127383 [No Abstract] [Full Text] [Related]
22. Computer simulation of flagellar movement: VII. Conventional but functionally different cross-bridge models for inner and outer arm dyneins can explain the effects of outer arm dynein removal. Brokaw CJ Cell Motil Cytoskeleton; 1999; 42(2):134-48. PubMed ID: 10215423 [TBL] [Abstract][Full Text] [Related]
23. Analysis of force generation during flagellar assembly through optical trapping of free-swimming Chlamydomonas reinhardtii. McCord RP; Yukich JN; Bernd KK Cell Motil Cytoskeleton; 2005 Jul; 61(3):137-44. PubMed ID: 15887297 [TBL] [Abstract][Full Text] [Related]
25. Fluctuations in rotation rate of the flagellar motor of Escherichia coli. Kara-Ivanov M; Eisenbach M; Caplan SR Biophys J; 1995 Jul; 69(1):250-63. PubMed ID: 7669902 [TBL] [Abstract][Full Text] [Related]
27. Dynein arms are oscillating force generators. Shingyoji C; Higuchi H; Yoshimura M; Katayama E; Yanagida T Nature; 1998 Jun; 393(6686):711-4. PubMed ID: 9641685 [TBL] [Abstract][Full Text] [Related]
28. Dynamics of a tightly coupled mechanism for flagellar rotation. Bacterial motility, chemiosmotic coupling, protonmotive force. Meister M; Caplan SR; Berg HC Biophys J; 1989 May; 55(5):905-14. PubMed ID: 2720081 [TBL] [Abstract][Full Text] [Related]
29. Some self-consistent two-state sliding filament models of muscle contraction. Hill TL; Eisenberg E; Chen YD; Podolsky RJ Biophys J; 1975 Apr; 15(4):335-72. PubMed ID: 1125390 [TBL] [Abstract][Full Text] [Related]
30. Torque and switching in the bacterial flagellar motor. An electrostatic model. Berry RM Biophys J; 1993 Apr; 64(4):961-73. PubMed ID: 7684268 [TBL] [Abstract][Full Text] [Related]
31. Propulsion of micro-organisms by three-dimensional flagellar waves. Coakley CJ; Holwill ME J Theor Biol; 1972 Jun; 35(3):525-42. PubMed ID: 5041665 [No Abstract] [Full Text] [Related]
32. Cinemicrographic analysis of the movement of flagellated bacteria. I. The ratio of the propulsive velocity to the frequency of bodily rotation. Yoshida T; Shimada K; Asakura S J Mechanochem Cell Motil; 1975; 3(2):87-98. PubMed ID: 1214109 [TBL] [Abstract][Full Text] [Related]
33. Novel mode of hyper-oscillation in the paralyzed axoneme of a Chlamydomonas mutant lacking the central-pair microtubules. Yagi T; Kamiya R Cell Motil Cytoskeleton; 1995; 31(3):207-14. PubMed ID: 7585990 [TBL] [Abstract][Full Text] [Related]
34. Dynein-ADP as a force-generating intermediate revealed by a rapid reactivation of flagellar axoneme. Tani T; Kamimura S Biophys J; 1999 Sep; 77(3):1518-27. PubMed ID: 10465762 [TBL] [Abstract][Full Text] [Related]
36. Locomotion of flagellates with mastigonemes. Brennen C J Mechanochem Cell Motil; 1976 Mar; 3(3):207-17. PubMed ID: 945316 [TBL] [Abstract][Full Text] [Related]
37. Swimming motility plays a key role in the stochastic dynamics of cell clumping. Qi X; Nellas RB; Byrn MW; Russell MH; Bible AN; Alexandre G; Shen T Phys Biol; 2013 Apr; 10(2):026005. PubMed ID: 23416991 [TBL] [Abstract][Full Text] [Related]
39. A macroscopic scale model of bacterial flagellar bundling. Kim M; Bird JC; Van Parys AJ; Breuer KS; Powers TR Proc Natl Acad Sci U S A; 2003 Dec; 100(26):15481-5. PubMed ID: 14671319 [TBL] [Abstract][Full Text] [Related]