These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 963203)
61. Simulations of three-dimensional ciliary beats and cilia interactions. Gueron S; Liron N Biophys J; 1993 Jul; 65(1):499-507. PubMed ID: 8369453 [TBL] [Abstract][Full Text] [Related]
62. A three-state model for oscillation in muscle: sinusoidal analysis. Murase M; Tanaka H; Nishiyama K; Shimizu H J Muscle Res Cell Motil; 1986 Feb; 7(1):2-10. PubMed ID: 3958157 [TBL] [Abstract][Full Text] [Related]
63. A model of crossbridge action: the effects of ATP, ADP and Pi. Pate E; Cooke R J Muscle Res Cell Motil; 1989 Jun; 10(3):181-96. PubMed ID: 2527246 [TBL] [Abstract][Full Text] [Related]
64. Kinetic diagram and free energy diagram for kinesin in microtubule-related motility. Hill TL Proc Natl Acad Sci U S A; 1986 May; 83(10):3326-30. PubMed ID: 2422648 [TBL] [Abstract][Full Text] [Related]
65. Bend propagation in flagella. I. Derivation of equations of motion and their simulation. Hines M; Blum JJ Biophys J; 1978 Jul; 23(1):41-57. PubMed ID: 667306 [TBL] [Abstract][Full Text] [Related]
66. Motility of triton-demembranated sea urchin sperm flagella during digestion by trypsin. Brokaw CJ; Simonick TF J Cell Biol; 1977 Dec; 75(3):650-65. PubMed ID: 562884 [TBL] [Abstract][Full Text] [Related]
67. Bend propagation in flagella. II. Incorporation of dynein cross-bridge kinetics into the equations of motion. Hines M; Blum JJ Biophys J; 1979 Mar; 25(3):421-41. PubMed ID: 162447 [TBL] [Abstract][Full Text] [Related]
68. Models for oscillation and bend propagation by flagella. Brokaw CJ Symp Soc Exp Biol; 1982; 35():313-38. PubMed ID: 6223398 [TBL] [Abstract][Full Text] [Related]
69. Computer simulation of flagellar movement. IV. Properties of an oscillatory two-state cross-bridge model. Brokaw CJ Biophys J; 1976 Sep; 16(9):1029-41. PubMed ID: 963203 [TBL] [Abstract][Full Text] [Related]
70. Computer simulation of flagellar movement. V. oscillation of cross-bridge models with an ATP-concentration-dependent rate function. Brokaw CJ; Rintala D J Mechanochem Cell Motil; 1977 Sep; 4(3):205-32. PubMed ID: 753901 [TBL] [Abstract][Full Text] [Related]
71. Computer simulation of flagellar movement. III. Models incorporating cross-bridge kinetics. Brokaw CJ; Rintala DR J Mechanochem Cell Motil; 1975; 3(2):77-86. PubMed ID: 1214108 [TBL] [Abstract][Full Text] [Related]
72. A model of flagellar movement based on cooperative dynamics of dynein-tubulin cross-bridges. Murase M; Shimizu H J Theor Biol; 1986 Apr; 119(4):409-33. PubMed ID: 2943943 [TBL] [Abstract][Full Text] [Related]
73. Molecular mechanism for oscillation in flagella and muscle. Brokaw CJ Proc Natl Acad Sci U S A; 1975 Aug; 72(8):3102-6. PubMed ID: 1059095 [TBL] [Abstract][Full Text] [Related]
74. Effects of increased viscosity on the movements of some invertebrate spermatozoa. Brokaw CJ J Exp Biol; 1966 Aug; 45(1):113-39. PubMed ID: 6007962 [No Abstract] [Full Text] [Related]
75. Distributed representations for actin-myosin interaction in the oscillatory contraction of muscle. Thorson J; White DC Biophys J; 1969 Mar; 9(3):360-90. PubMed ID: 5780714 [TBL] [Abstract][Full Text] [Related]
76. Activation in a skeletal muscle contraction model with a modification for insect fibrillar muscle. Julian FJ Biophys J; 1969 Apr; 9(4):547-70. PubMed ID: 5778185 [TBL] [Abstract][Full Text] [Related]