These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 963207)

  • 1. Branched bimolecular lipid membranes.
    Schindler H; Feher G
    Biophys J; 1976 Sep; 16(9):1109-13. PubMed ID: 963207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties.
    Montal M; Mueller P
    Proc Natl Acad Sci U S A; 1972 Dec; 69(12):3561-6. PubMed ID: 4509315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of planar bilayer membranes from lipid monolayers. A critique.
    White SH; Petersen DC; Simon S; Yafuso M
    Biophys J; 1976 May; 16(5):481-9. PubMed ID: 1276378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alkylated glass partition allows formation of solvent-free lipid bilayer by Montal-Mueller technique.
    Batishchev OV; Indenbom AV
    Bioelectrochemistry; 2008 Nov; 74(1):22-5. PubMed ID: 18378502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of "solvent-free" black lipid bilayer membranes from glyceryl monooleate dispersed in squalene.
    White SH
    Biophys J; 1978 Sep; 23(3):337-47. PubMed ID: 698340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid fabrication of Teflon micropores for artificial lipid bilayer formation.
    Kitta M; Tanaka H; Kawai T
    Biosens Bioelectron; 2009 Dec; 25(4):931-4. PubMed ID: 19733472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane surface-charge titration probed by gramicidin A channel conductance.
    Rostovtseva TK; Aguilella VM; Vodyanoy I; Bezrukov SM; Parsegian VA
    Biophys J; 1998 Oct; 75(4):1783-92. PubMed ID: 9746520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water channel formation and ion transport in linear and branched lipid bilayers.
    Wang S; Larson RG
    Phys Chem Chem Phys; 2014 Apr; 16(16):7251-62. PubMed ID: 24618598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effect of inhalation anesthetics on the conductance and fusion time of lipid membranes].
    Tsofina LM; Khashaev ZKh; Dadaian MA
    Biofizika; 1978; 23(2):257-60. PubMed ID: 77166
    [No Abstract]   [Full Text] [Related]  

  • 10. Asymmetric black membranes formed by one monolayer of bipolar lipids at the air/water interface.
    Gliozzi A; Robello M; Relini A; Accardo G
    Biochim Biophys Acta; 1994 Jan; 1189(1):96-100. PubMed ID: 8305465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser ablation of micropores for formation of artificial planar lipid bilayers.
    O'Shaughnessy TJ; Hu JE; Kulp JL; Daly SM; Ligler FS
    Biomed Microdevices; 2007 Dec; 9(6):863-8. PubMed ID: 17574531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation by focused laser beam scanning of the photoelectric activity of bacteriorhodopsin-containing lipid bilayers.
    Dancsházy Z; Ormos P; Drachev LA; Skulachev VP
    Biophys J; 1978 Nov; 24(2):423-8. PubMed ID: 728523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Mechanosensitivity of gramicidin A channels in semispherical bilayer membranes at constant tension].
    Markin VS; Shlenskiĭ VG; Saimon SA; Benos DD; Ismailov II
    Biofizika; 2006; 51(6):1014-8. PubMed ID: 17175912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel method for artificial lipid-bilayer formation.
    Ide T; Ichikawa T
    Biosens Bioelectron; 2005 Oct; 21(4):672-7. PubMed ID: 16202882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pH modulation of transport properties of alamethicin oligomers inserted in zwitterionic-based artificial lipid membranes.
    Chiriac R; Luchian T
    Biophys Chem; 2007 Nov; 130(3):139-47. PubMed ID: 17888562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of hexadecaprenol on molecular organisation and transport properties of model membranes.
    Janas T; Nowotarski K; Gruszecki WI; Janas T
    Acta Biochim Pol; 2000; 47(3):661-73. PubMed ID: 11310968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion transport through lipid bilayers by synthetic ionophores: modulation of activity and selectivity.
    De Riccardis F; Izzo I; Montesarchio D; Tecilla P
    Acc Chem Res; 2013 Dec; 46(12):2781-90. PubMed ID: 23534613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High yield, reproducible and quasi-automated bilayer formation in a microfluidic format.
    Stimberg VC; Bomer JG; van Uitert I; van den Berg A; Le Gac S
    Small; 2013 Apr; 9(7):1076-85. PubMed ID: 23139010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orientation and lipid-peptide interactions of gramicidin A in lipid membranes: polarized attenuated total reflection infrared spectroscopy and spin-label electron spin resonance.
    Kóta Z; Páli T; Marsh D
    Biophys J; 2004 Mar; 86(3):1521-31. PubMed ID: 14990479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single ion-channel recordings using glass nanopore membranes.
    White RJ; Ervin EN; Yang T; Chen X; Daniel S; Cremer PS; White HS
    J Am Chem Soc; 2007 Sep; 129(38):11766-75. PubMed ID: 17784758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.