These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 9632246)

  • 21. Efflux-mediated heavy metal resistance in prokaryotes.
    Nies DH
    FEMS Microbiol Rev; 2003 Jun; 27(2-3):313-39. PubMed ID: 12829273
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure and Function of Cu(I)- and Zn(II)-ATPases.
    Sitsel O; Grønberg C; Autzen HE; Wang K; Meloni G; Nissen P; Gourdon P
    Biochemistry; 2015 Sep; 54(37):5673-83. PubMed ID: 26132333
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An intimate link: two-component signal transduction systems and metal transport systems in bacteria.
    Singh K; Senadheera DB; Cvitkovitch DG
    Future Microbiol; 2014; 9(11):1283-93. PubMed ID: 25437189
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure and ion-release mechanism of P
    Grønberg C; Hu Q; Mahato DR; Longhin E; Salustros N; Duelli A; Lyu P; Bågenholm V; Eriksson J; Rao KU; Henderson DI; Meloni G; Andersson M; Croll T; Godaly G; Wang K; Gourdon P
    Elife; 2021 Dec; 10():. PubMed ID: 34951590
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transition Metals and Virulence in Bacteria.
    Palmer LD; Skaar EP
    Annu Rev Genet; 2016 Nov; 50():67-91. PubMed ID: 27617971
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The structure and function of heavy metal transport P1B-ATPases.
    Argüello JM; Eren E; González-Guerrero M
    Biometals; 2007 Jun; 20(3-4):233-48. PubMed ID: 17219055
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural basis for metal binding specificity: the N-terminal cadmium binding domain of the P1-type ATPase CadA.
    Banci L; Bertini I; Ciofi-Baffoni S; Su XC; Miras R; Bal N; Mintz E; Catty P; Shokes JE; Scott RA
    J Mol Biol; 2006 Feb; 356(3):638-50. PubMed ID: 16388822
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bacterial ATP-driven transporters of transition metals: physiological roles, mechanisms of action, and roles in bacterial virulence.
    Klein JS; Lewinson O
    Metallomics; 2011 Nov; 3(11):1098-108. PubMed ID: 21901186
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of an integral protein of the brush border membrane mediating the transport of divalent metal ions.
    Knöpfel M; Schulthess G; Funk F; Hauser H
    Biophys J; 2000 Aug; 79(2):874-84. PubMed ID: 10920019
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ion efflux systems involved in bacterial metal resistances.
    Nies DH; Silver S
    J Ind Microbiol; 1995 Feb; 14(2):186-99. PubMed ID: 7766211
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Structure and function of heavy metal transporter P(1B)-ATPase in plant: a review].
    Zhang Y; Zhang Y; Sun T; Chai T
    Sheng Wu Gong Cheng Xue Bao; 2010 Jun; 26(6):715-25. PubMed ID: 20815250
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Iron transport into mycobacterium avium-containing phagosomes from an Nramp1(Gly169)-transfected RAW264.7 macrophage cell line.
    Kuhn DE; Lafuse WP; Zwilling BS
    J Leukoc Biol; 2001 Jan; 69(1):43-9. PubMed ID: 11200066
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bacterial transition metal P(1B)-ATPases: transport mechanism and roles in virulence.
    Argüello JM; González-Guerrero M; Raimunda D
    Biochemistry; 2011 Nov; 50(46):9940-9. PubMed ID: 21999638
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Macrophage NRAMP1 and its role in resistance to microbial infections.
    Govoni G; Gros P
    Inflamm Res; 1998 Jul; 47(7):277-84. PubMed ID: 9719491
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of iron-regulated proteins of Mycobacterium tuberculosis and cloning of tandem genes encoding a low iron-induced protein and a metal transporting ATPase with similarities to two-component metal transport systems.
    Calder KM; Horwitz MA
    Microb Pathog; 1998 Mar; 24(3):133-43. PubMed ID: 9514635
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metal binding to the N-terminal cytoplasmic domain of the PIB ATPase HMA4 is required for metal transport in Arabidopsis.
    Laurent C; Lekeux G; Ukuwela AA; Xiao Z; Charlier JB; Bosman B; Carnol M; Motte P; Damblon C; Galleni M; Hanikenne M
    Plant Mol Biol; 2016 Mar; 90(4-5):453-66. PubMed ID: 26797794
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A copper-transporting P-type ATPase found in the thylakoid membrane of the cyanobacterium Synechococcus species PCC7942.
    Kanamaru K; Kashiwagi S; Mizuno T
    Mol Microbiol; 1994 Jul; 13(2):369-77. PubMed ID: 7984114
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Copper-transporting ATPases: The evolutionarily conserved machineries for balancing copper in living systems.
    Migocka M
    IUBMB Life; 2015 Oct; 67(10):737-45. PubMed ID: 26422816
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Independent evolution of heavy metal-associated domains in copper chaperones and copper-transporting atpases.
    Jordan IK; Natale DA; Koonin EV; Galperin MY
    J Mol Evol; 2001 Dec; 53(6):622-33. PubMed ID: 11677622
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New findings on evolution of metal homeostasis genes: evidence from comparative genome analysis of bacteria and archaea.
    Coombs JM; Barkay T
    Appl Environ Microbiol; 2005 Nov; 71(11):7083-91. PubMed ID: 16269744
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.