These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 963228)

  • 41. "Self-screening" of rhodopsin in rod outer segments.
    Alpern M; Fulton AB; Baker BN
    Vision Res; 1987; 27(9):1459-70. PubMed ID: 3445480
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis.
    Baylor DA; Nunn BJ; Schnapf JL
    J Physiol; 1984 Dec; 357():575-607. PubMed ID: 6512705
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Photic modulation of a highly sensitive, near-infrared light-scattering signal recorded from intact retinal photoreceptors.
    Pepperberg DR; Kahlert M; Krause A; Hofmann KP
    Proc Natl Acad Sci U S A; 1988 Aug; 85(15):5531-5. PubMed ID: 3399504
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interactions between photoexcited rhodopsin and GTP-binding protein: kinetic and stoichiometric analyses from light-scattering changes.
    Kühn H; Bennett N; Michel-Villaz M; Chabre M
    Proc Natl Acad Sci U S A; 1981 Nov; 78(11):6873-7. PubMed ID: 6273893
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Light-induced interaction between rhodopsin and GTP-binding protein leads to the hydrolysis of GTP in the rod outer segment.
    Gupta BD; Borys TJ; Deshpande S; Jones RE; Abrahamson EW
    Biochem Cell Biol; 1986 Apr; 64(4):304-8. PubMed ID: 3087387
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cyanine dye measurement of a light-induced transient membrane potential associated with the metarhodopsin II intermediate in rod-outer-segment membranes.
    Bennett N; Michel-Villaz M; Dupont Y
    Eur J Biochem; 1980 Oct; 111(1):105-10. PubMed ID: 7053075
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The study of photoconduction of artificial lipid membranes incorporating rhodopsin. The simultaneous changes of membrane conduction and rhodopsin fluorescence.
    Fesenko EE; Ratner VL; Lyubarskiy AL
    Mol Biol Rep; 1976 Nov; 3(2):175-9. PubMed ID: 1012278
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Intracellular biochemical manipulation of phototransduction in detached rod outer segments.
    Sather WA; Detwiler PB
    Proc Natl Acad Sci U S A; 1987 Dec; 84(24):9290-4. PubMed ID: 2827176
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Initiation of light adaptation in barnacle photoreceptors.
    Strong J; Lisman J
    Science; 1978 Jun; 200(4349):1485-7. PubMed ID: 663629
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Lack of interaction of rhodopsin chromophore with membrane lipids. An electron-electron double resonance study using 14N:15N pairs.
    Renk GE; Crouch RK; Feix JB
    Biophys J; 1988 Mar; 53(3):361-5. PubMed ID: 2832012
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Photochemical functionality of rhodopsin-phospholipid recombinant membranes.
    O'Brien DF; Costa LF; Ott RA
    Biochemistry; 1977 Apr; 16(7):1295-303. PubMed ID: 557336
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Molecular mechanisms of photoreception. IV. Photoregeneration of rhodopsin from metarhodopsin II using the artificial lipid membrane method for detection of intermediate steps of this reaction].
    Orlov NIa; Fesenko EE
    Mol Biol (Mosk); 1981; 15(6):1276-85. PubMed ID: 7322116
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Rhodopsin lateral diffusion as a function of rod outer segment disk membrane axial position.
    Kaplan MW
    Biophys J; 1984 Apr; 45(4):851-3. PubMed ID: 6722271
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Kinetics, binding constant, and activation energy of the 48-kDa protein-rhodopsin complex by extra-metarhodopsin II.
    Schleicher A; Kühn H; Hofmann KP
    Biochemistry; 1989 Feb; 28(4):1770-5. PubMed ID: 2719933
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Light induced interaction between rhodopsin and GTP dependent processes in rod outer segments--I. Kinetic analyses of light scattering transients.
    Gupta BD; Deshpande S; Jones RE; Borys TJ; Abrahamson EW
    Photochem Photobiol; 1986 May; 43(5):529-33. PubMed ID: 3737703
    [No Abstract]   [Full Text] [Related]  

  • 56. Anomalous disperison of rhodopsin in rod outer segments of the frog.
    Jagger WS; Liebman PA
    J Opt Soc Am; 1976 Jan; 66(1):56-9. PubMed ID: 1245897
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Light- and nucleotide-dependent binding of phosphodiesterase to rod disk membranes: correlation with light-scattering changes and vesicle aggregation.
    Caretta A; Stein PJ
    Biochemistry; 1986 May; 25(9):2335-41. PubMed ID: 3013302
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Intracellular topography of rhodopsin regeneration in vertebrate rods.
    Williams TP; Penn JS
    J Gen Physiol; 1985 Sep; 86(3):413-22. PubMed ID: 4056732
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The decay of long-lived photoproducts in the isolated bullfrog rod outer segment: relationship to other dark reactions.
    Paulsen R; Miller JA; Brodie AE; Bownds MD
    Vision Res; 1975 Dec; 15(12):1325-32. PubMed ID: 1898
    [No Abstract]   [Full Text] [Related]  

  • 60. The contribution of a sensitizing pigment to the photosensitivity spectra of fly rhodopsin and metarhodopsin.
    Minke B; Kirschfeld K
    J Gen Physiol; 1979 May; 73(5):517-40. PubMed ID: 458418
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.