These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

41 related articles for article (PubMed ID: 963238)

  • 1. Influence of ribose 2'-O-methylation on GpC conformation by classical potential energy calculations.
    Stellman SD; Broyde SB; Wartell RM
    Biopolymers; 1976 Oct; 15(10):1951-64. PubMed ID: 963238
    [No Abstract]   [Full Text] [Related]  

  • 2. Conformational stability in dinucleoside phosphate crystals. Semiempirical potential energy calculations for uridylyl-3'-5'-adenosine monophosphate (UpA) and guanylyl-3',5'-cytidine monophosphate (GpC).
    Broyde SB; Stellman SD; Hingerty B; Langridge R
    Biopolymers; 1974 Jun; 13(6):1243-59. PubMed ID: 4851147
    [No Abstract]   [Full Text] [Related]  

  • 3. Nuclear magnetic resonance study of the impact of ribose 2'-O-methylation on the aqueous solution conformation of cytidylyl-(3' leads to 5')-cytidine.
    Cheng DM; Sarma RH
    Biopolymers; 1977 Aug; 16(8):1687-1711. PubMed ID: 890065
    [No Abstract]   [Full Text] [Related]  

  • 4. Classical potential energy calculations for ApA, CpC, GpG, and UpU. The influence of the bases on RNA subunit conformations.
    Broyde SB; Wartell RM; Stellman SD; Hingerty B; Langridge R
    Biopolymers; 1975 Aug; 14(8):1597-1613. PubMed ID: 1156657
    [No Abstract]   [Full Text] [Related]  

  • 5. Structure of guanosine-3',5'-cytidine monophosphate. I. Semi-empirical potential energy calculations and model-building.
    Stellman SD; Hingerty B; Broyde SB; Subramanian E; Sato T; Langridge R
    Biopolymers; 1973 Dec; 12(12):2731-50. PubMed ID: 4782550
    [No Abstract]   [Full Text] [Related]  

  • 6. Letter: Conformation of guanosine cytidine 3',5'-monophosphate (GpC).
    Stellman SD; Hingerty B; Broyde SB; Subramanian E; Sato T; LaNGRIDGE R
    Macromolecules; 1973; 6(4):652-3. PubMed ID: 4805365
    [No Abstract]   [Full Text] [Related]  

  • 7. Proton and phosphorus NMR studies of d-CpG(pCpG)n duplexes in solution. Helix-coil transition and complex formation with actinomycin-D.
    Patel DJ
    Biopolymers; 1976 Mar; 15(3):533-58. PubMed ID: 1252592
    [No Abstract]   [Full Text] [Related]  

  • 8. The structure of poly 2'-O-methylcytidylic acid and its complexes with polyinosinic acid.
    Zmudzka B; Tichy M; Shugar D
    Acta Biochim Pol; 1972; 19(2):149-60. PubMed ID: 4556697
    [No Abstract]   [Full Text] [Related]  

  • 9. Archaeal homologs of eukaryotic methylation guide small nucleolar RNAs: lessons from the Pyrococcus genomes.
    Gaspin C; Cavaillé J; Erauso G; Bachellerie JP
    J Mol Biol; 2000 Apr; 297(4):895-906. PubMed ID: 10736225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of guanylyl-3',5'-cytidine monophosphate. II. Description of the molecular and crystal structure of the calcium derivative in space group P2(1).
    Hingerty B; Subramanian E; Stellman SD; Broyde SB; Sato T; Langridge R
    Biopolymers; 1975 Jan; 14(1):227-36. PubMed ID: 1174655
    [No Abstract]   [Full Text] [Related]  

  • 11. The effect of monovalent cations on the association behavior of guanosine 5'-monophosphate, cytidine 5'-monophosphate, and their equimolar mixture in aqueous solution.
    Walmsley JA; Sagan BL
    Biopolymers; 1986 Nov; 25(11):2149-72. PubMed ID: 3024753
    [No Abstract]   [Full Text] [Related]  

  • 12. [Method for conformation calculations of large fragments of nucleic acids. I. Models for conformational energy surface ribose and 2'-deoxyribose].
    Vorob'ev IuN
    Mol Biol (Mosk); 1981; 15(3):517-25. PubMed ID: 6789143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An investigation of rRNA and synthetic polyribonucleotides by the spin-label method.
    Zavriev SK; Grigoryan GL; Karmanov PA; Rtveliashvili GA; Rozantsev EG
    Mol Biol; 1974 Sep; 8(2):242-8. PubMed ID: 4372519
    [No Abstract]   [Full Text] [Related]  

  • 14. Studies on the conformation of nucleosides, dinucleoside monophosphates and homopolynucleotides containing uracil or thymine base residues, and ribose, deoxyribose or 2'-O-methylribose.
    Rabczenko A; Shugar D
    Acta Biochim Pol; 1971; 18(4):387-402. PubMed ID: 5139427
    [No Abstract]   [Full Text] [Related]  

  • 15. A new synthesis of 2'-C-methylnucleosides starting from D-ribose.
    Beigelman LN; Ermolinsky BS; Gurskaya GV; Tsapkina EN; Karpeisky MYa ; Mikhailov SN
    Nucleic Acids Symp Ser; 1987; (18):41-4. PubMed ID: 3122187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeted ribose methylation of RNA in vivo directed by tailored antisense RNA guides.
    Cavaillé J; Nicoloso M; Bachellerie JP
    Nature; 1996 Oct; 383(6602):732-5. PubMed ID: 8878486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Minor components in transfer RNA: their characterization, location, and function.
    Nishimura S
    Prog Nucleic Acid Res Mol Biol; 1972; 12():49-85. PubMed ID: 4557059
    [No Abstract]   [Full Text] [Related]  

  • 18. [Absorption spectra of nucleic acids and related compounds in the spectral region 120--280 nm].
    Kiseleva MN; Zarochentseva EP; Dodonova NIa
    Biofizika; 1975; 20(4):561-5. PubMed ID: 1081409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The calculated free energy effects of 5-methyl cytosine on the B to Z transition in DNA.
    Pearlman DA; Kollman PA
    Biopolymers; 1990 Jul-Aug 5; 29(8-9):1193-209. PubMed ID: 2369632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of non-complementary nucleotides on the rate of helix formation: kinetics of formation of poly (I)-poly (C,I) and poly (I)-poly (C,U) complexes.
    Kallenbach NR; Drost SD
    Biopolymers; 1972; 11(8):1613-20. PubMed ID: 5056085
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.