These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 9632641)
1. Unisite catalysis without rotation of the gamma-epsilon domain in Escherichia coli F1-ATPase. García JJ; Capaldi RA J Biol Chem; 1998 Jun; 273(26):15940-5. PubMed ID: 9632641 [TBL] [Abstract][Full Text] [Related]
2. Complete kinetic and thermodynamic characterization of the unisite catalytic pathway of Escherichia coli F1-ATPase. Comparison with mitochondrial F1-ATPase and application to the study of mutant enzymes. Al-Shawi MK; Senior AE J Biol Chem; 1988 Dec; 263(36):19640-8. PubMed ID: 2904441 [TBL] [Abstract][Full Text] [Related]
3. Acceleration of unisite catalysis of mitochondrial F1-adenosinetriphosphatase by ATP, ADP and pyrophosphate--hydrolysis and release of the previously bound [gamma-32P]ATP. García JJ; Gómez-Puyou A; Maldonado E; Tuena De Gómez-Puyou M Eur J Biochem; 1997 Oct; 249(2):622-9. PubMed ID: 9370375 [TBL] [Abstract][Full Text] [Related]
4. Unisite catalysis and the delta subunit of F1-ATPase in Escherichia coli. Xiao R; Penefsky HS J Biol Chem; 1994 Jul; 269(30):19232-7. PubMed ID: 8034684 [TBL] [Abstract][Full Text] [Related]
5. Catalytic sites of Escherichia coli F1-ATPase. Characterization of unisite catalysis at varied pH. al-Shawi MK; Senior AE Biochemistry; 1992 Jan; 31(3):878-85. PubMed ID: 1531027 [TBL] [Abstract][Full Text] [Related]
6. The trapping of different conformations of the Escherichia coli F1 ATPase by disulfide bond formation. Effect on nucleotide binding affinities of the catalytic sites. Grüber G; Capaldi RA J Biol Chem; 1996 Dec; 271(51):32623-8. PubMed ID: 8955091 [TBL] [Abstract][Full Text] [Related]
7. ATP binding causes a conformational change in the gamma subunit of the Escherichia coli F1ATPase which is reversed on bond cleavage. Turina P; Capaldi RA Biochemistry; 1994 Nov; 33(47):14275-80. PubMed ID: 7947838 [TBL] [Abstract][Full Text] [Related]
8. Differentiation of catalytic sites on Escherichia coli F1ATPase by laser photoactivated labeling with [3H]-2-Azido-ATP using the mutant beta Glu381Cys:epsilonSer108Cys to identify different beta subunits by their interactions with gamma and epsilon subunits. Grüber G; Capaldi RA Biochemistry; 1996 Apr; 35(13):3875-9. PubMed ID: 8672416 [TBL] [Abstract][Full Text] [Related]
9. Unisite hydrolysis of [gamma 32 P]ATP by soluble mitochondrial F1-ATPase and its release by excess ADP and ATP. Effect of trifluoperazine. García JJ; Gómez-Puyou A; de Gómez-Puyou MT J Bioenerg Biomembr; 1997 Feb; 29(1):61-70. PubMed ID: 9067803 [TBL] [Abstract][Full Text] [Related]
10. Nucleotide-dependent movement of the epsilon subunit between alpha and beta subunits in the Escherichia coli F1F0-type ATPase. Aggeler R; Capaldi RA J Biol Chem; 1996 Jun; 271(23):13888-91. PubMed ID: 8662953 [TBL] [Abstract][Full Text] [Related]
11. Rotation of a gamma-epsilon subunit domain in the Escherichia coli F1F0-ATP synthase complex. The gamma-epsilon subunits are essentially randomly distributed relative to the alpha3beta3delta domain in the intact complex. Aggeler R; Ogilvie I; Capaldi RA J Biol Chem; 1997 Aug; 272(31):19621-4. PubMed ID: 9235970 [TBL] [Abstract][Full Text] [Related]
12. Characterization of the interface between gamma and epsilon subunits of Escherichia coli F1-ATPase. Tang C; Capaldi RA J Biol Chem; 1996 Feb; 271(6):3018-24. PubMed ID: 8621695 [TBL] [Abstract][Full Text] [Related]
13. The stalk region of the Escherichia coli ATP synthase. Tyrosine 205 of the gamma subunit is in the interface between the F1 and F0 parts and can interact with both the epsilon and c oligomer. Watts SD; Tang C; Capaldi RA J Biol Chem; 1996 Nov; 271(45):28341-7. PubMed ID: 8910457 [TBL] [Abstract][Full Text] [Related]
14. ATP hydrolysis-linked structural changes in the N-terminal part of the gamma subunit of Escherichia coli F1-ATPase examined by cross-linking studies. Aggeler R; Capaldi RA J Biol Chem; 1993 Jul; 268(20):14576-8. PubMed ID: 8392054 [TBL] [Abstract][Full Text] [Related]
15. Thermodynamic analyses of the catalytic pathway of F1-ATPase from Escherichia coli. Implications regarding the nature of energy coupling by F1-ATPases. al-Shawi MK; Parsonage D; Senior AE J Biol Chem; 1990 Mar; 265(8):4402-10. PubMed ID: 2137823 [TBL] [Abstract][Full Text] [Related]
16. Asymmetry of Escherichia coli F1-ATPase as a function of the interaction of alpha-beta subunit pairs with the gamma and epsilon subunits. Haughton MA; Capaldi RA J Biol Chem; 1995 Sep; 270(35):20568-74. PubMed ID: 7657634 [TBL] [Abstract][Full Text] [Related]
17. The cysteine introduced into the alpha subunit of the Escherichia coli F1-ATPase by the mutation alpha R376C is near the alpha-beta subunit interface and close to a noncatalytic nucleotide binding site. Turina P; Aggeler R; Lee RS; Senior AE; Capaldi RA J Biol Chem; 1993 Apr; 268(10):6978-84. PubMed ID: 8463230 [TBL] [Abstract][Full Text] [Related]
18. The second stalk composed of the b- and delta-subunits connects F0 to F1 via an alpha-subunit in the Escherichia coli ATP synthase. Rodgers AJ; Capaldi RA J Biol Chem; 1998 Nov; 273(45):29406-10. PubMed ID: 9792643 [TBL] [Abstract][Full Text] [Related]
19. Determination of the partial reactions of rotational catalysis in F1-ATPase. Scanlon JA; Al-Shawi MK; Le NP; Nakamoto RK Biochemistry; 2007 Jul; 46(30):8785-97. PubMed ID: 17620014 [TBL] [Abstract][Full Text] [Related]
20. Effects of mutations of conserved Lys-155 and Thr-156 residues in the phosphate-binding glycine-rich sequence of the F1-ATPase beta subunit of Escherichia coli. Omote H; Maeda M; Futai M J Biol Chem; 1992 Oct; 267(29):20571-6. PubMed ID: 1400377 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]