These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 9632652)
1. Clostridium difficile toxins A and B are cation-dependent UDP-glucose hydrolases with differing catalytic activities. Ciesla WP; Bobak DA J Biol Chem; 1998 Jun; 273(26):16021-6. PubMed ID: 9632652 [TBL] [Abstract][Full Text] [Related]
2. Harnessing the glucosyltransferase activities of Clostridium difficile for functional studies of toxins A and B. Darkoh C; Kaplan HB; Dupont HL J Clin Microbiol; 2011 Aug; 49(8):2933-41. PubMed ID: 21653766 [TBL] [Abstract][Full Text] [Related]
3. The structure of Clostridium difficile toxin A glucosyltransferase domain bound to Mn2+ and UDP provides insights into glucosyltransferase activity and product release. D'Urzo N; Malito E; Biancucci M; Bottomley MJ; Maione D; Scarselli M; Martinelli M FEBS J; 2012 Sep; 279(17):3085-97. PubMed ID: 22747490 [TBL] [Abstract][Full Text] [Related]
4. Structural determinants of Clostridium difficile toxin A glucosyltransferase activity. Pruitt RN; Chumbler NM; Rutherford SA; Farrow MA; Friedman DB; Spiller B; Lacy DB J Biol Chem; 2012 Mar; 287(11):8013-20. PubMed ID: 22267739 [TBL] [Abstract][Full Text] [Related]
5. Change of the donor substrate specificity of Clostridium difficile toxin B by site-directed mutagenesis. Jank T; Reinert DJ; Giesemann T; Schulz GE; Aktories K J Biol Chem; 2005 Nov; 280(45):37833-8. PubMed ID: 16157585 [TBL] [Abstract][Full Text] [Related]
6. Fluorescent analogs of UDP-glucose and their use in characterizing substrate binding by toxin A from Clostridium difficile. Bhattacharyya S; Kerzmann A; Feig AL Eur J Biochem; 2002 Jul; 269(14):3425-32. PubMed ID: 12135481 [TBL] [Abstract][Full Text] [Related]
7. Auto-catalytic cleavage of Clostridium difficile toxins A and B depends on cysteine protease activity. Egerer M; Giesemann T; Jank T; Satchell KJ; Aktories K J Biol Chem; 2007 Aug; 282(35):25314-21. PubMed ID: 17591770 [TBL] [Abstract][Full Text] [Related]
8. Localization of the glucosyltransferase activity of Clostridium difficile toxin B to the N-terminal part of the holotoxin. Hofmann F; Busch C; Prepens U; Just I; Aktories K J Biol Chem; 1997 Apr; 272(17):11074-8. PubMed ID: 9111001 [TBL] [Abstract][Full Text] [Related]
9. UDP-glucose deficiency in a mutant cell line protects against glucosyltransferase toxins from Clostridium difficile and Clostridium sordellii. Chaves-Olarte E; Florin I; Boquet P; Popoff M; von Eichel-Streiber C; Thelestam M J Biol Chem; 1996 Mar; 271(12):6925-32. PubMed ID: 8636120 [TBL] [Abstract][Full Text] [Related]
10. Rho-glucosylating Clostridium difficile toxins A and B: new insights into structure and function. Jank T; Giesemann T; Aktories K Glycobiology; 2007 Apr; 17(4):15R-22R. PubMed ID: 17237138 [TBL] [Abstract][Full Text] [Related]
11. Toxins A and B from Clostridium difficile differ with respect to enzymatic potencies, cellular substrate specificities, and surface binding to cultured cells. Chaves-Olarte E; Weidmann M; Eichel-Streiber C; Thelestam M J Clin Invest; 1997 Oct; 100(7):1734-41. PubMed ID: 9312171 [TBL] [Abstract][Full Text] [Related]
12. Development of a non-radiolabeled glucosyltransferase activity assay for C. difficile toxin A and B using ultra performance liquid chromatography. Loughney JW; Lancaster C; Price CE; Hoang VM; Ha S; Rustandi RR J Chromatogr A; 2017 May; 1498():169-175. PubMed ID: 28238427 [TBL] [Abstract][Full Text] [Related]
13. Autocatalytic processing of Clostridium difficile toxin B. Binding of inositol hexakisphosphate. Egerer M; Giesemann T; Herrmann C; Aktories K J Biol Chem; 2009 Feb; 284(6):3389-95. PubMed ID: 19047051 [TBL] [Abstract][Full Text] [Related]
14. Involvement of Ras-related Rho proteins in the mechanisms of action of Clostridium difficile toxin A and toxin B. Dillon ST; Rubin EJ; Yakubovich M; Pothoulakis C; LaMont JT; Feig LA; Gilbert RJ Infect Immun; 1995 Apr; 63(4):1421-6. PubMed ID: 7890404 [TBL] [Abstract][Full Text] [Related]
15. Metal Ion Activation of Clostridium sordellii Lethal Toxin and Clostridium difficile Toxin B. Genth H; Schelle I; Just I Toxins (Basel); 2016 Apr; 8(4):109. PubMed ID: 27089365 [TBL] [Abstract][Full Text] [Related]
16. Clostridium difficile toxin glucosyltransferase domains in complex with a non-hydrolyzable UDP-glucose analogue. Alvin JW; Lacy DB J Struct Biol; 2017 Jun; 198(3):203-209. PubMed ID: 28433497 [TBL] [Abstract][Full Text] [Related]
17. Processing of Clostridium difficile toxins. Giesemann T; Egerer M; Jank T; Aktories K J Med Microbiol; 2008 Jun; 57(Pt 6):690-696. PubMed ID: 18480324 [TBL] [Abstract][Full Text] [Related]
18. New method to generate enzymatically deficient Clostridium difficile toxin B as an antigen for immunization. Genth H; Selzer J; Busch C; Dumbach J; Hofmann F; Aktories K; Just I Infect Immun; 2000 Mar; 68(3):1094-101. PubMed ID: 10678912 [TBL] [Abstract][Full Text] [Related]
19. The enzymatic domain of Clostridium difficile toxin A is located within its N-terminal region. Faust C; Ye B; Song KP Biochem Biophys Res Commun; 1998 Oct; 251(1):100-5. PubMed ID: 9790914 [TBL] [Abstract][Full Text] [Related]
20. Comparison of wild type with recombinant Clostridium difficile toxin A. Gerhard R; Burger S; Tatge H; Genth H; Just I; Hofmann F Microb Pathog; 2005; 38(2-3):77-83. PubMed ID: 15748809 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]