BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 9632652)

  • 1. Clostridium difficile toxins A and B are cation-dependent UDP-glucose hydrolases with differing catalytic activities.
    Ciesla WP; Bobak DA
    J Biol Chem; 1998 Jun; 273(26):16021-6. PubMed ID: 9632652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Harnessing the glucosyltransferase activities of Clostridium difficile for functional studies of toxins A and B.
    Darkoh C; Kaplan HB; Dupont HL
    J Clin Microbiol; 2011 Aug; 49(8):2933-41. PubMed ID: 21653766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The structure of Clostridium difficile toxin A glucosyltransferase domain bound to Mn2+ and UDP provides insights into glucosyltransferase activity and product release.
    D'Urzo N; Malito E; Biancucci M; Bottomley MJ; Maione D; Scarselli M; Martinelli M
    FEBS J; 2012 Sep; 279(17):3085-97. PubMed ID: 22747490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural determinants of Clostridium difficile toxin A glucosyltransferase activity.
    Pruitt RN; Chumbler NM; Rutherford SA; Farrow MA; Friedman DB; Spiller B; Lacy DB
    J Biol Chem; 2012 Mar; 287(11):8013-20. PubMed ID: 22267739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Change of the donor substrate specificity of Clostridium difficile toxin B by site-directed mutagenesis.
    Jank T; Reinert DJ; Giesemann T; Schulz GE; Aktories K
    J Biol Chem; 2005 Nov; 280(45):37833-8. PubMed ID: 16157585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescent analogs of UDP-glucose and their use in characterizing substrate binding by toxin A from Clostridium difficile.
    Bhattacharyya S; Kerzmann A; Feig AL
    Eur J Biochem; 2002 Jul; 269(14):3425-32. PubMed ID: 12135481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Auto-catalytic cleavage of Clostridium difficile toxins A and B depends on cysteine protease activity.
    Egerer M; Giesemann T; Jank T; Satchell KJ; Aktories K
    J Biol Chem; 2007 Aug; 282(35):25314-21. PubMed ID: 17591770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localization of the glucosyltransferase activity of Clostridium difficile toxin B to the N-terminal part of the holotoxin.
    Hofmann F; Busch C; Prepens U; Just I; Aktories K
    J Biol Chem; 1997 Apr; 272(17):11074-8. PubMed ID: 9111001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. UDP-glucose deficiency in a mutant cell line protects against glucosyltransferase toxins from Clostridium difficile and Clostridium sordellii.
    Chaves-Olarte E; Florin I; Boquet P; Popoff M; von Eichel-Streiber C; Thelestam M
    J Biol Chem; 1996 Mar; 271(12):6925-32. PubMed ID: 8636120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rho-glucosylating Clostridium difficile toxins A and B: new insights into structure and function.
    Jank T; Giesemann T; Aktories K
    Glycobiology; 2007 Apr; 17(4):15R-22R. PubMed ID: 17237138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toxins A and B from Clostridium difficile differ with respect to enzymatic potencies, cellular substrate specificities, and surface binding to cultured cells.
    Chaves-Olarte E; Weidmann M; Eichel-Streiber C; Thelestam M
    J Clin Invest; 1997 Oct; 100(7):1734-41. PubMed ID: 9312171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a non-radiolabeled glucosyltransferase activity assay for C. difficile toxin A and B using ultra performance liquid chromatography.
    Loughney JW; Lancaster C; Price CE; Hoang VM; Ha S; Rustandi RR
    J Chromatogr A; 2017 May; 1498():169-175. PubMed ID: 28238427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autocatalytic processing of Clostridium difficile toxin B. Binding of inositol hexakisphosphate.
    Egerer M; Giesemann T; Herrmann C; Aktories K
    J Biol Chem; 2009 Feb; 284(6):3389-95. PubMed ID: 19047051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of Ras-related Rho proteins in the mechanisms of action of Clostridium difficile toxin A and toxin B.
    Dillon ST; Rubin EJ; Yakubovich M; Pothoulakis C; LaMont JT; Feig LA; Gilbert RJ
    Infect Immun; 1995 Apr; 63(4):1421-6. PubMed ID: 7890404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal Ion Activation of Clostridium sordellii Lethal Toxin and Clostridium difficile Toxin B.
    Genth H; Schelle I; Just I
    Toxins (Basel); 2016 Apr; 8(4):109. PubMed ID: 27089365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clostridium difficile toxin glucosyltransferase domains in complex with a non-hydrolyzable UDP-glucose analogue.
    Alvin JW; Lacy DB
    J Struct Biol; 2017 Jun; 198(3):203-209. PubMed ID: 28433497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Processing of Clostridium difficile toxins.
    Giesemann T; Egerer M; Jank T; Aktories K
    J Med Microbiol; 2008 Jun; 57(Pt 6):690-696. PubMed ID: 18480324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New method to generate enzymatically deficient Clostridium difficile toxin B as an antigen for immunization.
    Genth H; Selzer J; Busch C; Dumbach J; Hofmann F; Aktories K; Just I
    Infect Immun; 2000 Mar; 68(3):1094-101. PubMed ID: 10678912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The enzymatic domain of Clostridium difficile toxin A is located within its N-terminal region.
    Faust C; Ye B; Song KP
    Biochem Biophys Res Commun; 1998 Oct; 251(1):100-5. PubMed ID: 9790914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of wild type with recombinant Clostridium difficile toxin A.
    Gerhard R; Burger S; Tatge H; Genth H; Just I; Hofmann F
    Microb Pathog; 2005; 38(2-3):77-83. PubMed ID: 15748809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.